

Review of Transboundary Air Pollution (RoTAP)

David Fowler

Chair of RoTAP

Outline

 Present an update of the Review of Transboundary Air Pollution (RoTAP)

National Expert Group on Transboundary Air Pollution (NEGTAP, 2001)

NEGTAP Report published in 2001 Provided a detailed description of :

- acid deposition
- eutrophication
- ground level ozone
 Analysed data to 1999

RoTAP Project began in February 2008 with the aim of reviewing the current UK status of :

- acid deposition
- eutrophication
- ground level ozone
- heavy metals

Stucture of the RoTAP Report

- 1) Introduction
- 2) Emissions
- 3) Concentrations & Deposition
- 4) Modelling Concentrations and Deposition
- 5) Effects on Soils, Freshwater Vegetation
- 6) Heavy Metals
- 7) European & Global Perspectives
- 8) Recovery
- 9) Recommendations
 Executive & Technical Summary
 Summary for Policy Makers

Acidification

THE DIRTY MAN OFEUROPE

CHUID

1

0-671-71059-1

THE

GREAT

IRTY MAN OF E

SCANDAL

CHRIS ROSE

THE GREAT BRITISH POLLUTION SCANDAL

Trend in SO₂ Concentrations

Acidity in UK Precipitation 1986-2004

Non-marine Sulphate in precipitation 1986-2004

Changes in UK Sulphur Budget

What are the consequences for effects?

The benefits of the reduced emissions are greatest in the lowlands and urban areas and least in the uplands (Wales, Scotland)

Acidification in the UK

- The large reduction in emissions and deposition of sulphur has reduced acidity in UK soils
- Freshwaters show reduced acidity, sulphur and ANC has increased
- Evidence of biological recovery is widespread in the UK

But

- While the area of broad habitat exceeded for acidity has declined from 71% in 1996-8, to 58% in 2004-6 it will still be 40% in 2020......
- So recovery has some way to go

Integrated science for our changing world www.ceh.ac.uk

1990

ENVIRONMENTAL IMPACTS

% Ecosystems not protected against acidification

2010

Sulphur and Acidification

- A success policy story, very large emission reductions achieved, the UK atmosphere is much cleaner (WRT S and acidity) but the recovery process is slow especially the ecological recovery and the end point of the trajectory may differ from pre-acidification....the chemical and physical climates will be very different
- Substantial outputs of the science in peer reviewed publications, and opportunities for more from the high quality measurements and the time series (evidence based policy well supported).
- But there are surprises

64 maps of concentration and deposition of the gases, aerosols and wet deposition components

Eutrophication

Oxidized and reduced Nitrogen

Eutrophication – NO_x

Nitrate in precipitation 1986-2006

Trends in Group 1 and 2 are significant at $\alpha = 0.05$ level

Trend in Group 2 was not significant for 1986 -2001

Eutrophication – NO_x (units k tonnes-N)

Centre for Ecology & Hydrology

Integrated science for our changing world www.ceh.ac.uk

What are the effects of the deposited N

Negative

- Changes in species composition of semi-natural flora
- NO₃ leaching to soil and freshwater
- Acidification
- Enhance emissions of N₂O

Positive

 Sequestration of carbon through enhancing primary productivity

Effects of Nitrogen deposition

- Critical loads for effects of nitrogen deposition on sensitive habitats are exceeded over 60% of their area in the UK, and is expected to decline to 49% by 2020s
- There is strong evidence that N deposition has reduced the diversity of plant species per unit area in a range of habitats of high conservation value.
- Not all forms deposited N are equally damaging, and dry deposition of NH₃ is more damaging than wet deposition of reduced or oxidized N

Heavy metals in the UK

- The first comprehensive assessment of metal emission, concentration and deposition in the UK,
- 5 years of data, concentrations in rain, aerosol (and gas phase for Hg)
- UK atmospheric budget and export
- 26 metals including Cu, Zn, Pb, Cd, V, As, Cr

Heavy metals – UK Maps

Cu concentration in air

Cu concentration in rain

Cu Total Deposition

Heavy metals –Comparing UK Emissions and Deposition

T y ⁻¹	As	Cd	Cr	Cu	Ni	Pb	Se	V	Zn	Hg
Emissions NAEI	14	4	36	60	87	118	49	960	461	7.6
Import	3	2	18	32	18	35	19	-	344	-
Measured Deposition	73	10	52	333	155	398	85	203	2190	1.8
Ratio of Deposition/ Emissions	5.2	2.5	1.4	5.6	1.8	3.4	1.7	0.21	4.7	0.24

Metals in the UK atmosphere

- The official emission inventories (NAEI)are not adequate to explain the observed concentrations and deposition in the UK
- The differences between observed concentrations and deposition and the NAEI vary but for Cu, Zn, Pb and As, the difference is approximately a factor of 4
- While we have some good ideas, we really do not know the additional sources of this metal, so the effect of new control measures would be uncertain.
- Critical loads based on ecosystem effects have been calculated for Pb, Cd, Cu, Ni and Zn for 6 UK habitats.

Integrated science for our changing world www.ceh.ac.uk

Ground Level Ozone

Year

Ozone remains a major problem

Present-day annual ozone impacts in EU:

- 20,000 deaths brought forward
- 20 million respiratory hospital days
- 50 million restricted activity days in young adults due to respiratory symptoms
- €6.7 billion loss of arable crops
- Semi-natural vegetation shows the same sensitivity to ozone as crop plants

Integrated science for our changing world www.ceh.ac.uk

Projected changes in surface O_3 (2050-2000) during the peak O_3 season due to <u>climate change</u>

Impact of 2000-2050 climate change only (prescribed future climate: HadGEM SRES A1B)

The RoTAP analysis has been applied across the UK.

The budget values are presented for the UK.....but these would not necessarily show the same trends as regional or country trends within the UK.

For Scotland:

Scottish Monitoring Sites

Acidification:	A success story, but recovery is slow and the potential acidification from N dep remains.
Eutrophication:	Substantial reductions in N emissions have led to small benefits within the UK, there is more to do, on both oxidized and reduced N
Ozone:	Ozone remains a serious problem in the UK, and reduction of background ozone requires control at hemispheric scale.
Metals:	The sources of metals in the UK atmosphere need to be quantified and the emission inventory revised

Summary

Deposition budget trends at the UK scale conceal trends at regional scale which are important both in revealing scientific features of the trend and have significant policy implications