

Prof Duncan Laxen

A 193 page report prepared for SNIFFER Scotland and Northern Ireland Forum for Environmental Research

Available at: www.sniffer.org.uk/Default.aspx

and at: www.aqconsultants.co.uk/downloadreports.aspx

Prepared by

Prof. Duncan Laxen, Stephen Moorcroft, Dr Ben Marner and Kieran Laxen

Dr Paul Boulter and Dr Tim Barlow

Prof. Roy Harrison

Dr Mat Heal

Sponsored by

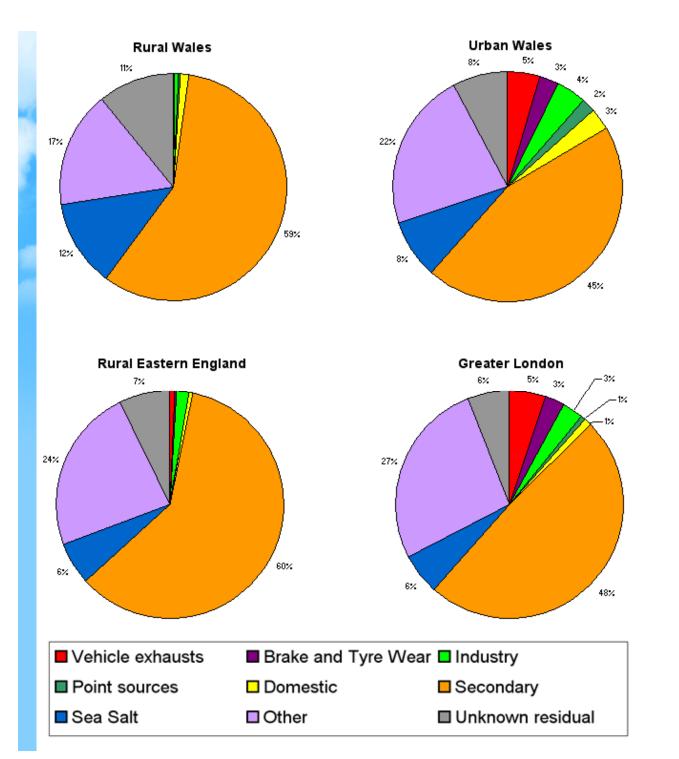
An Agency within the Department of the **Environment** www.doeni.gov.uk

Report Covers

- Characteristics & behaviour of PM in the atmosphere
- Sources of PM_{2.5}
- Exposure to PM_{2.5} in the UK
- Health effects of PM_{2.5}
- Legislation to control exposure
- Monitoring for $PM_{2.5}$
- Modelling for PM_{2.5}
- Policy implications, recommendations and delivery

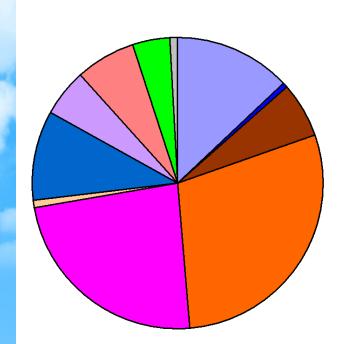
Why PM_{2.5}?

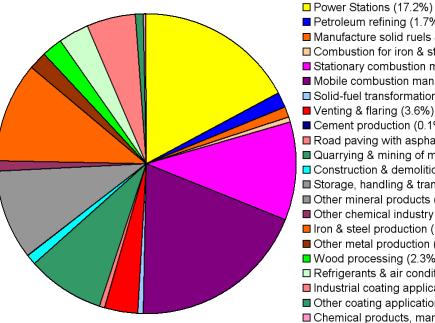
- PM_{2.5} is the pollutant most clearly associated with adverse health outcomes, including death
- There is no known threshold for effects, i.e. no safe level
- There are new UK and EU standards that will have to be met



Important distinction

- Important distinction between primary and secondary particles
- Primary particles are particles emitted directly into the atmosphere
- Secondary particles are formed in the atmosphere through atmospheric reactions, e.g. SO₂ > sulphates
 - The formation of secondary particles is relatively slow (hours to days) so secondary PM_{2.5} is found well downwind of the sources of the precursor gases
 - As a consequence secondary particles are evenly distributed in the atmosphere




Sources of PM_{2.5} in 2010

- Residential (13.0%)
- Commercial/institutional (0.7%)
- Power stations (6.0%)
- Industrial operations (28.9%)
- Road transport (23.5%)
- Rail (0.8%)
- Shipping (10.1%)
- □ Off-road mobile (5.3%)
- Aviation (0.1%)
- Waste (6.6%)
- Agriculture (4.2%)
- □ Other (0.8%)

Sources of Primary PM_{2.5} in the UK

Petroleum refining (1.7%) Manufacture solid ruels & other energy industries (1.0%) □ Combustion for iron & steel (0.5%) ■ Stationary combustion manufacturing industries & construction (10.5%) Mobile combustion manufacturing industries & construction (19.4%) ■ Solid-fuel transformation (0.4%) Venting & flaring (3.6%) ■ Cement production (0.1%) Road paving with asphalt (0.5%) Quarrying & mining of minerals (other than coal) (8.4%) □ Construction & demolition (1.0%) ■ Storage, handling & transport of mineral products (0.2%) ■ Other mineral products (9.5%) Other chemical industry (1.2%) ■ Iron & steel production (10.7%) Other metal production (2.0%) ■ Wood processing (2.3%) □ Refrigerants & air conditioning equipment (3.3%) ■ Industrial coating application (5.4%) Other coating application (0.8%) Chemical products, manufacture & processing (0.2%)

PM_{2.5} Standards

- Key change has been the introduction of exposurereduction target, with a backstop standard to ensure concentrations are not too high at any location
- Exposure-reduction is based on it being more effective to reduce the exposure of a large number of people by a small amount, than to reduce exposure of a small number of people by a large amount.
 - The health benefits of reducing average exposure of 10 million people by 1 μg/m³, are one hundred times greater than reducing the exposure of 10,000 people by 10 μg/m³.

- Need to consider EU, UK and Scottish standards
- UK and Scottish standards came first 2007 Strategy

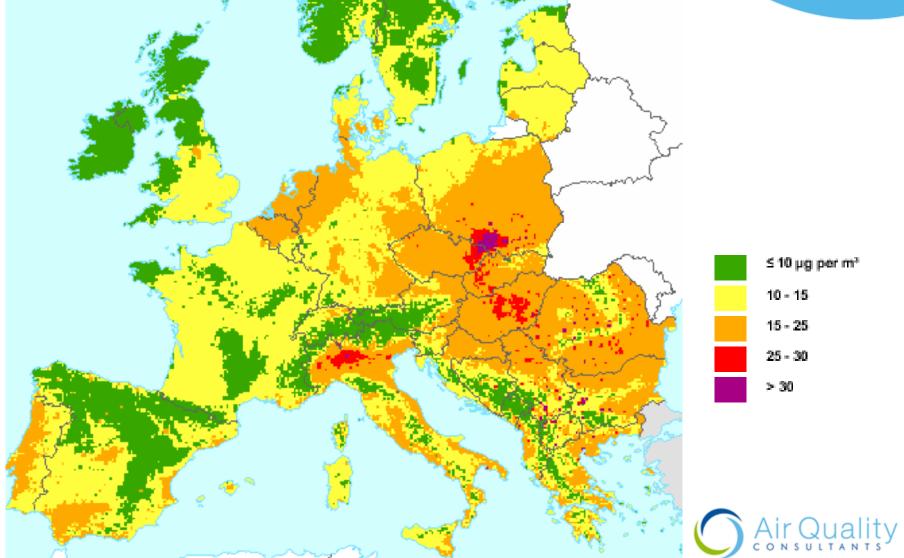
	Time Period	Standard	Timescale
UK	Annual	Objective 25 μ g/m ³	By 2020
	3 Year running mean	Objective 15% reduction across urban background sites	Over period 2010 to 2020
Scotland	Annual	Objective 12 μ g/m ³	By 2020
	3 Year running mean	Objective 15% reduction across urban background sites	Over period 2010 to 2020

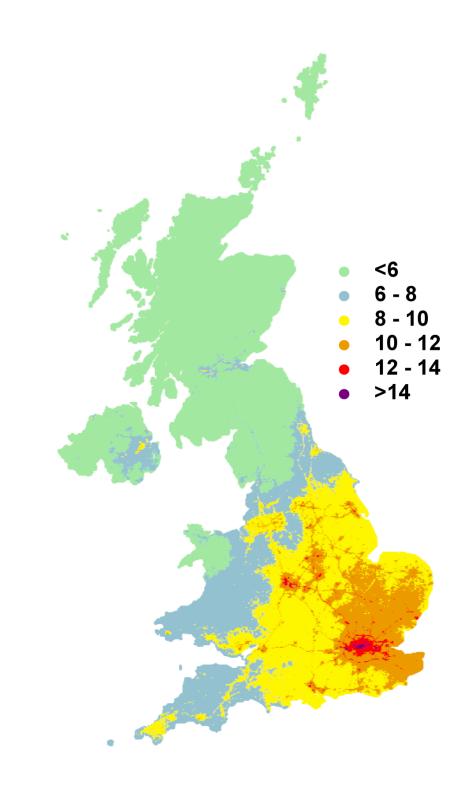
PM_{2.5} Standards

• EU standards 2008 CAFE Directive implemented 2010

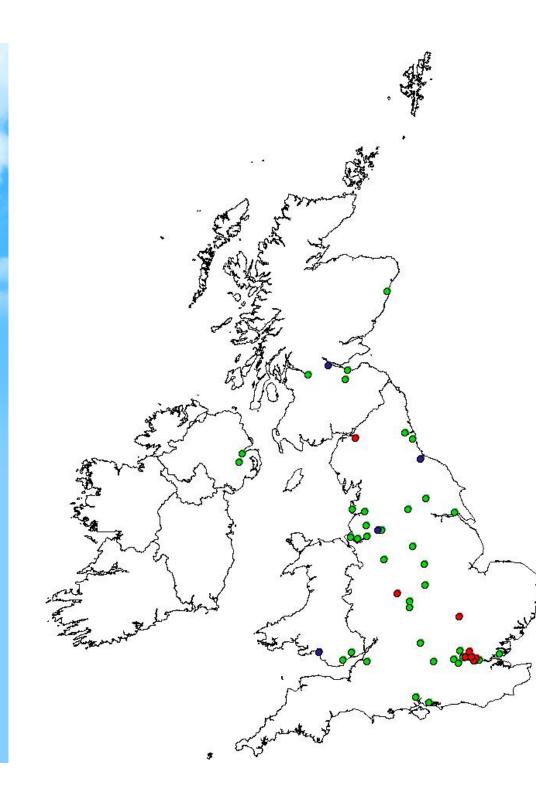
Time Period	Standard	Value	Timescale
Annual	Target value	25 μg/m ³	2010
Annual	Limit value	25 μg/m³	By 2015
Annual	Stage 2 indicative limit value	20 µg/m ³	By 2020
3 Year Average Exposure Indicator (AEI)	Exposure-reduction target	0% - 20% depending on initial AEI	Over period 2010 to 2020
3 Year Average Exposure Indicator (AEI)	Exposure-concentration obligation	20 μg/m ³	2015

PM_{2.5} Exposure Reduction




- The Average Exposure Indicator (AEI) is being based on measurements at 50 urban background sites across the UK, with 3 in Scotland (Aberdeen, Edinburgh, Glasgow)
- Start year will be 2009 2011 (not 2008-2010)
- Boundary between 10% and 15% reduction for EU target is 13 $\mu g/m^3$
- In 2009 UK average was 13.2 $\mu g/m^3$
- Exposure-reduction target is obligation on Member State – has not been devolved down to Local Authorities (yet?)

PM_{2.5} across Europe 2005



PM_{2.5} across the UK in 2010

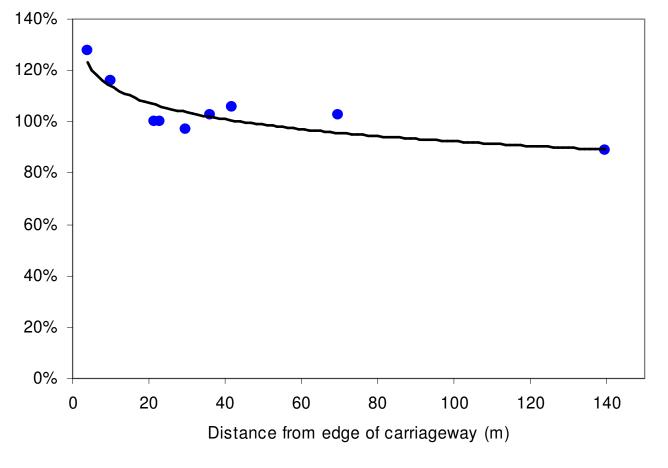
PM_{2.5} AURN (UK Monitoring Network)

67 sites: 43 urban background 17 roadside/kerbside 4 industrial

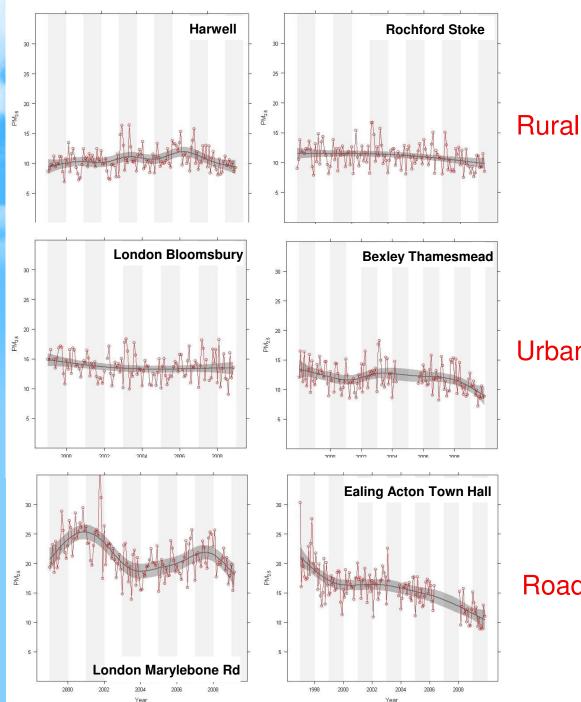
3 rural

General Pattern of PM_{2.5} Annual Mean Concentrations 2009

Rural Background Urban Background Roadside Kerbside Industrial


- **3 10 μg/m³**
- + 3 6 μg/m³
- + 1- 2 μg/m³
- + 7 8 μ g/m³

? Small



PM₁₀ Fall-off with Distance from Road (M25) (PM_{2.5} similar)

PM_{2.5} Trends 1998-2009

Urban Background

Roadside

PM_{2.5} vs PM₁₀ as Control on PM

- PM_{10} daily mean limit value (approx. annual mean of 31.5 μ g/m³) will be more stringent than $PM_{2.5}$ annual mean limit value of 25 μ g/m³
 - > 31.5 μ g/m³ PM₁₀ equates to ~17 μ g/m³ PM_{2.5} in the north of UK to ~24 μ g/m³ in the southeast
- PM₁₀ annual mean objective in Scotland will be more stringent than PM_{2.5} annual mean objective of 12 μg/m³
 > 18 μg/m³ PM₁₀ equates to ~10 μg/m³ PM_{2.5}
- So PM₁₀ objectives and limit values will drive controls at hotspots

Exposure reduction target is challenging

- 10-15% reduction will require ~1.5-2 μ g/m³ reduction in urban background PM_{2.5} across the UK over 10 years
- If to be achieved by reducing local sources then need to reduce urban background contribution by this amount, i.e. 1.5-2 μg/m³ reduction out of 3-6 μg/m³ which is 25-67% reduction
- If to be achieved by reducing secondary sources then need to reduce secondary PM_{2.5}contribution by this amount, i.e. 1.5-2 µg/m³ reduction out of 4-6 µg/m³ which is 25-50% reduction
- These reductions are substantial and will be challenging to deliver

Key Points

- Significant health benefits from reducing exposure to $PM_{2.5}$
- Sources are many and diverse with different attributes, making control more challenging
- Key role played by secondary PM
- Exposure varies across UK but dominated by background
- Meeting the Exposure-Reduction target will be challenging

Head Office 23 Coldharbour Road, Bristol BS6 7JT Tel: 0117 974 1086

London Office 12 Airedale Road, London SW12 8SF Tel/Fax: 020 8673 4313

