

Air pollution and health in Scotland: A summary of the evidence

mm \Lambda 🚥

Professor Duncan Lee

4th March 2020 - SAQD Annual Seminar

Duncan.Lee@glasgow.ac.uk

- Air pollution has long been known to adversely affect public health in both the developed and developing world.
- A report by the Royal College of Physicians in 2016 estimates that 40,000 premature deaths are attributable to air pollution each year in the United Kingdom.
- Epidemiological studies into the effects of air pollution have been conducted since the 1990s, with one of the first being that conducted by *Schwartz and Marcus (1990)* in London.
- Since 1990 a large number of studies have been conducted, which collectively have investigated the short-term and long-term health impact of air pollution.

Air pollution is currently an important policy area in Scotland, with examples including:

- The review of the Cleaner Air for Scotland (CAFS) strategy in 2019.
- The introduction of Low emission zones (LEZs) in the four major cities, with the first in Glasgow beginning a phased implementation in 2019.
- Numerous other air pollution reduction policies being introduced, such as the Avenues project in Glasgow (https://www.glasgow.gov.uk/avenues).

- Summarise the evidence base on the health impact of air pollution in Scotland.
- Present the results from a recent study conducted in Scotland.

The health impact of air pollution has been quantified by 3 main study designs.

- Time series studies quantifying short-term effects.
- Spatial areal unit studies quantifying long-term effects.
- Individual-level studies (cohort and population) quantifying long-term effects.

The latter type allow individual-level cause and effect to be established, but are more costly and time consuming to conduct than the first two types.

- The Scottish evidence is relatively small in terms of the number of studies.
- However, consistent significant associations have been found between air pollution and respiratory ill health using different study designs, including:
 - Prescribing rates in primary care Lee (2018).
 - Hospital admissions Huang et al. (2018).
 - Mortality Beverland et al. (2014).

versity

• These findings broadly agree with the international evidence.

University Scottish evidence - Cardiovascular disease

- No associations have been found between air pollution and cardiovascular ill health using different study designs, including studies by
 - Prescott et al. (1998) time series design.
 - Willocks et al. (2012) time series design.
 - Beverland et al. (2014) individual design.
 - Lee et al. (2018) spatial design.
- These studies have considered both hospitalisations and mortalities, and have studied a range of pollutants including NO₂, PM₁₀, PM_{2.5} and black smoke.
- These findings broadly disagree with the international evidence, which has found significant associations between air pollution and cardiovascular disease.

Juniversity of Glasgow Scottish evidence - Other health end points

- All-cause mortality Inconsistent results, some studies found significant associations (e.g. Beverland et al. 2012) while others found no effects (e.g. Carder et al. 2008).
- Maternal exposure and pregnancy outcomes -Inconsistent results, some studies found significant associations (e.g. Clemens et al. 2017) with foetal growth, while other studies (e.g. Dibben and Clemens 2015) found no association with low birth weight.
- Mental health outcomes have been associated with air pollution in the international literature, but associations have not been greatly studied in Scotland thus far.

- One of the most recent studies based in Scotland was conducted using data from the two-year period 2015-16.
- The study has a spatial ecological design, and uses spatial contrasts in disease incidence and air pollution to estimate population-level effects.
- It was conducted by myself jointly with:
 - Prof Chris Robertson University of Strathclyde.
 - Dr Colin Ramsay Health Protection Scotland.
 - Dr Colin Gillespie Scottish Environment Protection Agency.
- It was published as *Estimating the health impact of air* pollution in Scotland, and the resulting benefits of reducing concentrations in city centres, in Spatial and Spatio-temporal Epidemiology, Volume 29, June 2019, P85-96.

- The study region is mainland Scotland in 2015-2016, and we have data for K = 1250 Intermediate Zones (IZ).
- We use total counts of the numbers of cases of the following disease outcomes in each IZ over 2015-2016 as the disease measure:
 - Cardiovascular hospitalisations.
 - Cardiovascular mortality.
 - Respiratory hospitalisations.
 - Respiratory mortality.
 - Total non-accidental mortality.

- Population demography is accounted for using indirect standardisation, which computes an expected number of disease cases in each IZ, based on 5-year age and sex specific population estimates in each IZ.
- Average concentrations of NO_x, NO₂, PM₁₀ and PM_{2.5} over 2015-2016 are obtained from DEFRA (Pollution Climate Mapping model) on a 1km² resolution, and are converted to the IZ scale by averaging.
- Covariates include:
 - Domain specific indicators of the Scottish Index of Multiple Deprivation (SIMD) 2015 (access to services, crime, housing, income).
 - Dwellings per hectare as a proxy for urbanicity.

An exploratory measure of disease risk for the population living in each Intermediate Zone is the standardised mortality (or morbidity) ratio (SMR), which is computed as

$$SMR = \frac{\text{Observed number of disease events}}{\text{Expected number of disease events}}$$

- SMR= 1 means there are as many deaths as expected.
- SMR> 1 means there are more deaths than expected. If SMR=1.2 there are 20% more deaths than expected.
- SMR< 1 means there are fewer deaths than expected.

Data maps

2.0

1.5 1.0

0.5

- We considered each disease outcome separately, and only put one pollutant in each model as all pairs of pollutants are highly correlated (between 0.66 and 0.99).
- This led to 20 different models, five disease outcomes and four different pollutants.
- Thus all results are marginal, that is, you cannot add up the estimated pollution effects across multiple diseases or pollutants.
- The results should also not be compared to other study designs (e.g. cohort studies), as the data scales are not comparable.
- The results on the next slide are presented as relative risks, which represent the increased risk of disease if pollution concentrations increased by a fixed amount.

Disease	Pollutant			
	NO_2	NO_x	PM _{2.5}	\mathbf{PM}_{10}
Cardio h	1.012	1.006	1.018	1.006
	(0.994, 1.030)	(0.995, 1.016)	(0.997, 1.040)	(0.995, 1.017)
Cardio m	0.988	0.993	0.995	0.997
	(0.970, 1.006)	(0.982, 1.005)	(0.994, 1.016)	(0.987, 1.008)
Resp h	1.028	1.014	1.058	1.023
	(1.008, 1.048)	(1.002, 1.025)	(1.034, 1.083)	(1.011, 1.035)
Resp m	1.032	1.017	1.045	1.014
	(0.997, 1.067)	(0.996, 1.038)	(1.002, 1.090)	(0.992, 1.035)
Total m	1.003	1.001	1.012	1.005
	(0.986, 1.020)	(0.990, 1.011)	(0.992, 1.033)	(0.995, 1.016)

The results for NO₂ and NO_x relate to a $5\mu gm^{-3}$ increase whilst those for PM_{2.5} and PM₁₀ relate to a $1\mu gm^{-3}$ increase.

The potential impact of decreasing PM_{2.5}

(A) Reduction in hospitalisations (B) PM_{2.5} 56.0 Latitude 55.85 55.85 55.80 55.80 Longitude Lonaitude (D) PM_{2.5} (C) Reduction in hospitalisations 55.90 -Jusebar atitude 55.85 55.80 Lonaitude Longitude

The estimated impact on the number of hospital admissions if $PM_{2.5}$ had been decreased by $1\mu gm^{-3}$ in 2015-2016.

- Air pollution appears to have a consistent effect on respiratory disease across the Scottish literature, with all studies finding significant associations.
- In contrast, the Scottish studies consistently find no significant associations with cardiovascular disease, which is at odds with the international literature.
- Further work is required to quantify why this discrepancy exists for cardiovascular disease, as well as to investigate the link between air pollution and mental health in Scotland.
- However, the major limitation of all air pollution and health studies is that they assume an individuals exposure is equivalent to the outdoor concentration at their home which is implausible.