



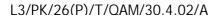
### Local Air Quality Management

### Updating and Screening Assessment

for

### **Moray Council**

#### BMT Cordah Limited,


Pentlands Science Park, Penicuik, Midlothian, EH26 OPZ, UK Telephone: + 44 (0)131 445 6120 Fax: + 44 (0)131 445 6110 e-mail: main@cordah.co.uk Website: http://www.cordah.co.uk

Report No: Status: Version: Date of Release: Terms: Cordah/MOR.005/2003 Final Version 1 3-Jun-03 The contents of this report are confidential. No part thereof is to be cited without the express permission of BMT CORDAH or Moray Council

Approved and authorised for issue:

Rebecca Richardson, Consultant

Bill Sheridan, Principal Consultant





### CONTENTS

| EXECUT<br>1 | IVE SUMMARY<br>INTRODUCTION                |     |
|-------------|--------------------------------------------|-----|
| 1.1         | Review and Assessment Framework            | 2   |
| 1.2         | Description of Moray                       | 5   |
| 2           | REVIEW AND ASSESSMENT OF CARBON MONOXIDE   | . 6 |
| 2.1         | Background Concentration                   | 6   |
| 2.2         | Monitoring data                            | 6   |
| 2.3         | Road Traffic                               | 7   |
| 2.4         | Industrial Sources                         | 7   |
| 2.5         | Conclusion                                 | 8   |
| 3           | REVIEW AND ASSESSMENT FOR BENZENE          | . 9 |
| 3.1         | Background Concentration                   | 9   |
| 3.2         | Monitoring Data                            | 10  |
| 3.3         | Road Traffic                               | 10  |
| 3.4         | Industrial Sources                         | 10  |
| 3.5         | Petrol Stations                            | 11  |
| 3.6         | Major Fuel Storage Depots                  | 11  |
| 3.7         | Conclusion                                 | 11  |
| 4           | REVIEW AND ASSESSMENT FOR 1,3 BUTADIENE    | 12  |
| 4.1         | Background Concentrations                  | 12  |
| 4.2         | Monitoring Data                            | 12  |
| 4.3         | Industrial Sources                         | 13  |
| 4.4         |                                            | 13  |
| 5           | REVIEW AND ASSESSMENT FOR LEAD             | 14  |
| 5.1         | Monitoring data                            | 14  |
| 5.2         | Industrial Sources                         | 15  |
| 5.3         | Conclusion                                 | 15  |
| 6           | REVIEW AND ASSESSMENT FOR NITROGEN DIOXIDE | 16  |
| 6.1         | Background Concentration                   | 16  |
| 6.2         | Monitoring Data                            | 17  |
| 6.2.1       | QA/QC of Diffusion Tube Monitoring Data    | 17  |
| 6.2.2       | Monitoring Results                         | 18  |
| 6.3         | Road Traffic                               | 20  |
| 6.4         | Industrial Sources                         | 22  |
| 6.5         | Air Traffic                                | 22  |
| 6.6         | Conclusion                                 | 23  |

| 7         | REVIEW AND ASSESSMENT OF SULPHUR DIOXIDE                                                                                      | 24              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 7.1       | Background Concentration                                                                                                      | 24              |
| 7.2       | Monitoring Data                                                                                                               | 25              |
| 7.3       | Industrial Sources                                                                                                            | 26              |
| 7.4       | Domestic Coal Burning                                                                                                         | 27              |
| 7.5       | Small Boilers                                                                                                                 | 27              |
| 7.6       | Shipping                                                                                                                      | 28              |
| 7.7       | Railways                                                                                                                      | 28              |
| 7.8       | Conclusion                                                                                                                    | 29              |
| 8         | REVIEW AND ASSESSMENT FOR PARTICLES (PM10)                                                                                    | 30              |
| 8.1       | Background Concentration                                                                                                      | 31              |
| 8.2       | Monitoring Data                                                                                                               | 31              |
| 8.3       | Road Traffic                                                                                                                  | 32              |
| 8.4       | Industrial Sources                                                                                                            | 34              |
| 8.5       | Solid Fuel Burning                                                                                                            | 34              |
| 8.6       | Quarries and Dust Emitting Processes                                                                                          | 35              |
| 8.7       | Air Traffic                                                                                                                   | 35              |
| 8.8       | Conclusion                                                                                                                    | 36              |
| 9<br>10   | CONCLUSIONS<br>REFERENCES                                                                                                     |                 |
| Table C   | contents List                                                                                                                 |                 |
|           | Objectives included in the Air Quality Regulations 2000 and (Amendment) R<br>for the Purpose of Local Air Quality Management. | egulations<br>2 |
| Table 2 A | Air Quality Objectives for Carbon Dioxide                                                                                     | 6               |

 Table 3 Maximum 8-hour Running Mean CO Concentrations measured at Aberdeen National

 Network Monitoring Site
 7

Table 4 Air Quality Objectives for Benzene

Table 5 Maximum Running Annual Mean Benzene Concentrations Measured at Edinburgh Medical<br/>School10

Table 6 Air Quality Objectives for 1,3-butadiene

9

12

| Table 7 Maximum Running Annual Mean 1,3-butadiene Concentrations Measured at Edinbu<br>Medical School                                           | urgh<br>13 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Table 8 Air Quality Objectives for Lead                                                                                                         | 14         |
| Table 9 Annual Mean Lead-in-air Concentrations at Glasgow, Falkirk and Motherwell Nati<br>Network Monitoring Sites                              | onal<br>15 |
| Table 10 Air Quality Objectives for Nitrogen Dioxide                                                                                            | 16         |
| Table 11 Cross Comparison of $NO_2$ Concentrations from the Union Street, Aberdeen Co-loca Diffusion Tube and Automatic $NO_2$ monitoring sites | ated<br>18 |
| Table 12 $NO_2$ Diffusion Tube Monitoring Sites in Moray since 1999                                                                             | 18         |
| Table 13 NO <sub>2</sub> Monitoring Results                                                                                                     | 19         |
| Table 14 Traffic Flows at Junctions Assessed using the DRMB Assessment                                                                          | 21         |
| Table 15 Summary of DMRB Assessment of Road Traffic Emissions within Moray                                                                      | 22         |
| Table 16 Air Quality Objectives for Sulphur Dioxide                                                                                             | 24         |
| Table 17 Annual Mean SO <sub>2</sub> Concentrations and Capture Rates                                                                           | 25         |
| Table 18 Density of Coal-burning Properties within Moray                                                                                        | 27         |
| Table 19 Air Quality Objectives for Particles                                                                                                   | 30         |
| Table 20 Annual Mean $PM_{10}$ Concentrations measured at Aberdeen National Monitoring Site                                                     | 31         |
| Table 21 Roundabouts and Junctions Assessed using DMRB Assessment                                                                               | 33         |
| Table 22 Summary of 2005 $PM_{10}$ DMRB Assessment of Road Traffic Emissions within Moray                                                       | 33         |
| Table 23 Summary of 2010 $PM_{10}$ DMRB Assessment of Road Traffic Emissions within Moray                                                       | 34         |
| Table 24 Density of Coal-burning properties within Moray                                                                                        | 35         |

### Appendix Contents List

| Appendix 1 | Correspondence                                                           |  |  |
|------------|--------------------------------------------------------------------------|--|--|
| Appendix 2 | Figures                                                                  |  |  |
| Appendix 3 | NETCEN Background Pollutant Concentration<br>Maps                        |  |  |
| Appendix 4 | Road Traffic Counts                                                      |  |  |
| Appendix 5 | Design Manual for Roads and Bridges Road<br>Traffic Emissions Assessment |  |  |
| Appendix 6 | Inventory of SEPA Regulated Industrial<br>Processes within Moray         |  |  |

### EXECUTIVE SUMMARY

This is the Updating and Screening Assessment (U&SA) required under The Environment Act 1995 and subsequent regulations. The Act requires that Local authorities conduct a Review and Assessment of air quality in their area to assess compliance with the objectives set out in the Air Quality Strategy for England, Scotland, Wales and Northern Ireland 2000 (Ref. 1), the Air Quality Regulations 2000 (Ref. 2) and Air Quality (Scotland) Amendment Regulations 2002 (Ref. 3).

The report has reviewed the conclusions made during Round 1 and considered any new sources or any changes that have occurred since the first stage Review and Assessment that may affect air quality.

The assessment has concluded that a detailed assessment is not required for carbon monoxide, benzene, 1,3-butadiene, lead, nitrogen dioxide or sulphur dioxide.

The assessment has concluded that a detailed assessment is required for particles ( $PM_{10}$ ) to be submitted to the Scottish Executive by the end of April 2004.

In addition Moray Council will be required to continue their assessment of air quality for all other pollutants in their area and produce an annual progress report to the Scottish Executive by the end of April 2004.

### 1 INTRODUCTION

### 1.1 Review and Assessment Framework

The Environment Act 1995 and subsequent Regulations require Local authorities to conduct a Review and Assessment of air quality in their area to assess compliance with the standards and objectives set out in the Air Quality Strategy for England, Scotland, Wales and Northern Ireland 2000 (Ref.1), the Air Quality Regulations 2000 (Ref.2) and Air Quality (Scotland) Amendment Regulations 2002 (Ref. 3).

The air quality objectives for the purpose of Review and Assessment are shown in Table 1.

# Table 1 Objectives included in the Air Quality Regulations 2000 and (Amendment) Regulations 2002 for the Purpose of Local Air Quality Management.

| Pollutant           | Objective                                                                                       |                     | Date to be Achieved<br>By |
|---------------------|-------------------------------------------------------------------------------------------------|---------------------|---------------------------|
|                     | Concentration                                                                                   | Measured As         |                           |
| Benzene             | 16.25µg/m <sup>3</sup> (5ppb)                                                                   | Running annual mean | 31 December 2003          |
|                     | 3.25 μg/m <sup>3</sup> (1ppb)                                                                   | Running annual mean | 31 December 2010          |
| 1,3-<br>Butadiene   | 2.25µg/m³ (1ppb)                                                                                | Running annual mean | 31 December 2003          |
| Carbon<br>monoxide  | 10mg/m <sup>3</sup> (10ppm)                                                                     | Running 8 hour mean | 31 December 2003          |
| Lead                | 0.5µg/m³                                                                                        | Annual mean         | 31 December 2004          |
|                     | 0.25µg/m³                                                                                       | Annual mean         | 31 December 2008          |
| Nitrogen<br>Dioxide | 200µg/m <sup>3</sup> (105ppb) not<br>to be exceeded more<br>than 18 times per year <sup>1</sup> | 1 hour mean         | 31 December 2005          |
|                     | 40µg/m <sup>3</sup> (21ppb)                                                                     | Annual mean         | 31 December 2005          |

| Particles<br>(PM <sub>10</sub> ) | 50µg/m <sup>3</sup> not to be<br>exceeded more than 35<br>times per year <sup>2</sup>         | 24 hour mean   | 31 December 2004 |
|----------------------------------|-----------------------------------------------------------------------------------------------|----------------|------------------|
|                                  | 40µg/m <sup>3</sup>                                                                           | Annual mean    | 31 December 2004 |
|                                  | 50µg/m <sup>3</sup> not to be<br>exceeded more than 7<br>times per year <sup>3</sup>          | 24 hour mean   | 31 December 2010 |
|                                  | 18µg/m <sup>3</sup>                                                                           | Annual mean    | 31 December 2010 |
| Sulphur<br>dioxide               | 350μg/m <sup>3</sup> (132ppb) not<br>to be exceeded more<br>than 24 times a year <sup>4</sup> | 1 hour mean    | 31 December 2004 |
|                                  | 125μg/m <sup>3</sup> (47ppb) not<br>to be exceeded more<br>than 3 times a year <sup>5</sup>   | 24 hour mean   | 31 December 2004 |
|                                  | 266μg/m <sup>3</sup> (100ppb) not<br>to be exceeded more<br>than 35 times a year <sup>6</sup> | 15 minute mean | 31 December 2005 |

<sup>1</sup> corresponds to the 99.8<sup>th</sup> percentile concentration of hourly means

- <sup>2</sup> corresponds to the 90<sup>th</sup> percentile concentration of 24-hour means
- <sup>3</sup> corresponds to the 98<sup>th</sup> percentile concentration of 24-hour means
- <sup>4</sup> corresponds to the 99.7<sup>th</sup> percentile concentration of 1-hour means
- <sup>5</sup> corresponds to the 99<sup>th</sup> percentile concentration of 24-hour means
- <sup>6</sup> corresponds to the 99.9<sup>th</sup> percentile concentration of 15-minute means

The framework of local air quality management (LAQM) requires a Review and Assessment of air quality by Local authorities on a regular basis. The first round of the Review and Assessment was completed by Moray Council during 2000. The first round of Review and Assessment by Moray Council concluded that it was unlikely that there would be any breach of air quality objectives for any pollutants.

The second round of the Review and Assessment commenced in 2003 and has two phases. The first stage of the second round of Review and Assessment is to conduct an Updating and Screening Assessment (U&SA). The U&SA considers any changes that have occurred since the first round of Review and Assessment that may affect air quality.

Where the U&SA identifies that there may be a risk of an exceedence of an air quality objective at a location with relevant public exposure then a Detailed Assessment must be undertaken. A Detailed Assessment will consider any risk of exceedence of an objective to greater depth in order to determine whether it is necessary to declare an air quality management area.

This report represents the U&SA of air quality within Moray and follows the guidance laid out in the Technical Guidance document LAQM.TG(03) (Ref.4).

### 1.2 Description of Moray

The Moray Council area is situated in the north east of Scotland south of the Moray Firth. The area varies topographically from estuarine waters in the north to mountainous areas in the south reaching altitudes greater than 800m above sea level.

Moray is neighboured by Highland Council to the south and west, by the Moray Firth to the north, and by Aberdeenshire to the east.

Moray has a relatively low population density with roughly 86,940 people living in the area. The principal town in Moray Council is Elgin although Buckie, Keith, Forres, and Lossiemouth are also large towns. The main areas of industry and commerce are found in Elgin. There are several quarrying industries around Keith, Dufftown and Dallachy near Fochabers.

The area is quite densely forested. The three most prominent rivers in the Moray area are the Rivers Spey, Lossie, and Findhorn. The Spynie Canal drains the lower part of Moray.

There are no motorways within the district although there are several major roads: A96, A95, A98, A920, A941, A940, and the A942. There is one mainline railway which operates in Moray. Several small ports and harbours are operational along the Moray Firth at Cullen, Portknockie, Buckie, Hopeman, Burghead, Lossiemouth, Findochty and Findhorn. No commercial airports are found within the Moray area but there are two RAF airfields in operation at Lossiemouth and Kinloss.

A map of the area is included in Figure 1 of Appendix 2.

### 2 REVIEW AND ASSESSMENT OF CARBON MONOXIDE

Carbon monoxide (CO) is produced by the incomplete combustion of organic substances. The main source of CO is from vehicle emissions.

The first round of Review and Assessment of air quality within the Moray Council (Ref. 5) area concluded that it was unlikely that there would be an exceedence of air quality objectives for carbon monoxide (CO). The Scottish Executive accepted this conclusion.

The air quality objective for CO as set out in the Air Quality (Amendment) Regulations 2000 is presented in Table 2.

#### Table 2 Air Quality Objective for Carbon Monoxide

| Concentration          | Measured As         | Date to be Achieved by |
|------------------------|---------------------|------------------------|
| 10.0 mg/m <sup>3</sup> | Running 8 hour mean | 31.12.03               |

The maximum running 8-hour mean therefore should not exceed 10 mg/m<sup>3</sup>.

An assessment of the impact of emission sources of CO and available monitoring data is made in Sections 2.1 to 2.4.

### 2.1 Background Concentration

AEA Technology National Environment Technology Centre (NETCEN) (Ref.6) has mapped the estimated annual mean background CO concentration for the UK including the Moray area. The maps are included in Appendix 3. The maps indicate that in 2001 the annual mean background CO concentration was less than 0.2 mg/m<sup>3</sup>. From the NETCEN detailed databases an area average of 0.117mg/m<sup>3</sup> was calculated for Moray. Box No.2.3 in the Technical guidance LAQM.TG(03) (Ref. 4) provides a correction factor to be applied to 2001 background concentrations to obtain an estimated background concentration for 2003. A factor of 0.826 has therefore been applied to the estimated 2001 concentration giving an estimated background concentration for 2003 of 0.096 mg/m<sup>3</sup>.

### 2.2 Monitoring data

Moray Council does not undertake any monitoring of CO. An estimation of CO concentration has therefore been made utilising monitoring data from the closest national network monitoring site.

The closest national network monitoring site to Moray is in Aberdeen. The monitoring site in Aberdeen is situated within an urban area therefore it is classified classed as an Urban Background Site. The maximum daily running 8-hour mean concentrations measured at Aberdeen for 2000 to 2001 are presented in Table 3.

# Table 3 Maximum 8-hour Running Mean CO Concentrations measured atAberdeen National Network Monitoring Site

|                                    | 2000 | 2001 |
|------------------------------------|------|------|
| Maximum daily running 8-hour mean  | 2.3  | 5.1  |
| concentration (mg/m <sup>3</sup> ) |      |      |

The CO concentration is monitored at Aberdeen using an automatic infra-red analyser. The analyser continuously measures the CO concentration and averages the concentration over hourly periods. A running 8-hour concentration is then calculated.

The concentrations measured at the Aberdeen site are significantly higher than the predicted background CO annual mean concentration from the NETCEN maps, which is lower than the NAQS objective for CO. Given that the emissions experienced at the Aberdeen site will be in excess of those experienced within Moray, due to much higher traffic counts, it will be unlikely that the urban background concentration in Moray will exceed the NAQS objective for CO.

Any potential exceedence of the NAQS objective for CO would be therefore expected to be due to a pollution hotspot. The impact from road traffic and industrial sources is considered in Section 2.3 and 2.4.

### 2.3 Road Traffic

Two-thirds of the total emissions of CO in the UK are due to road transport. Technical guidance LAQM.TG(03) (Ref. 4) states that any exceedence of CO objectives is only likely to occur close to very busy roads or junctions.

The technical guidance LAQM.TG(03) (Ref. 4) states that very busy roads should only be considered where the 2003 annual mean background concentration is expected to be above 1 mg/m<sup>3</sup>. Since the predicted background CO concentration was 0.096 mg/m<sup>3</sup> it is considered unlikely that emissions from any very busy roads will cause exceedence of the NAQS objective for CO. No roads were therefore assessed for the impact of CO emissions.

### 2.4 Industrial Sources

The Scottish Environment Protection Agency (SEPA) was consulted (Ref. 7) on emissions from industrial processors within Moray Council and neighbouring local authority areas. CO is not listed as a regulated pollutant for any of the regulated companies within Moray. It was concluded that it was unlikely that emissions from any industrial processes within or

outwith Moray were likely to cause an exceedence of the NAQS objective for CO. A list of SEPA regulated processes is provided in Appendix 6.

### 2.5 Conclusion

The CO concentrations monitored at Aberdeen AURN site indicate that the NAQS objective for CO is unlikely to be exceeded in an urban environment. Moray will not be subjected to emissions rates as high as those experienced at the Aberdeen site therefore it is unlikely that concentrations will exceed NAQS objective levels within Moray. In addition it is considered unlikely that there will be any localised exceedence of the NAQS objective for CO as a result of emissions from road traffic or industrial sources.

National studies indicate that the ambient CO concentration is likely to fall in the coming years with a decrease in emissions, particularly from motor vehicles as a result of improved vehicle technology.

It is therefore considered that the maximum running 8-hour mean CO concentration in Moray will remain below  $10 \text{ mg/m}^3$  during 2003.

A Detailed Assessment for CO is not required for Moray Council.

### 3 REVIEW AND ASSESSMENT FOR BENZENE

Benzene is an additive to vehicle fuel. The majority of emissions of benzene come from petrol vehicle exhausts.

The Air Quality Review Study prepared for the first round Review and Assessment for Moray Council (Ref.5) concluded that it was unlikely that there would be an exceedence of air quality objectives for benzene. The Scottish Executive accepted this conclusion.

The air quality objective for benzene as set out in the Air Quality Regulations 2000 is presented in Table 4. A stricter objective has also been introduced in Scotland for 2010.

#### Table 4 Air Quality Objectives for Benzene

| Concentration | Measured As         | Date to be Achieved by |
|---------------|---------------------|------------------------|
| 16.25 μg/m³   | Running annual mean | 31.12.03               |
| 3.25 μg/m³    | Running annual mean | 31.12.10               |

The predicted running annual mean therefore should not exceed 16.25  $\mu$ g/m<sup>3</sup> by the end of 2003. In addition the predicted running annual mean should not exceed 3.25 $\mu$ g/m<sup>3</sup> by the end of 2010.

Technical guidance LAQM.TG(03) (Ref. 4) states that the limit value for Benzene of 5  $\mu$ g/m<sup>3</sup> has been transposed into UK legislation and will become effective by the beginning of 2010.

An assessment of the impact of emission sources of benzene and available monitoring data is made in Sections 3.1 to 3.7.

### 3.1 Background Concentration

NETCEN has mapped estimated annual mean background benzene concentrations for 2001, 2003 and 2010. The maps are included in Appendix 3. The estimated annual mean concentration for all three years is significantly less than 0.3  $\mu$ g/m<sup>3</sup>. The average benzene concentration, calculated from the NETCEN detailed databases of background concentrations (Ref. 6) for the Moray area is 0.05  $\mu$ g/m<sup>3</sup> for 2001. Using the factors 0.875 and 0.659 for 2003 and 2010 respectively, provided in Box 3.3 of the technical guidance LAQM.TG(03) (Ref.4), predicted benzene concentrations for Moray of 0.046  $\mu$ g/m<sup>3</sup> for 2003 and 0.039  $\mu$ g/m<sup>3</sup> for 2010 have been calculated.

### 3.2 Monitoring Data

Moray Council does not undertake monitoring of benzene. The closest national network monitoring site is at Edinburgh Medical School, an Urban Background site in Edinburgh. The maximum running annual mean concentrations measured at the site are presented in Table 5.

# Table 5 Maximum Running Annual Mean Benzene ConcentrationsMeasured at Edinburgh Medical School

|                                                                              | 1999 | 2000 | 2001 |
|------------------------------------------------------------------------------|------|------|------|
| Maximum running annual mean Benzene concentration ( $\mu$ g/m <sup>3</sup> ) | 1.98 | 1.72 | 1.38 |

The maximum running annual mean concentrations measured at Edinburgh Medical School are therefore below both the 2003 and 2010 NAQS objectives for benzene. Ambient benzene concentrations in Moray will be expected to be lower than those experienced at Edinburgh Medical School as Moray is more rural and has lower traffic flows.

### 3.3 Road Traffic

Technical guidance document LAQM.TG(03) (Ref.4) states that Local authorities need only consider emissions from 'very busy roads' where the 2010 background is expected to be above  $2\mu g/m^3$ . The estimated 2010 background concentration for Moray taken from the NETCEN maps was less than 0.3  $\mu g/m^3$ .

Emissions from road traffic are therefore not considered likely to result in an exceedence of LAQM objectives for benzene.

### 3.4 Industrial Sources

SEPA was consulted (Ref.7) on emissions from industrial processors within Moray and neighbouring local authority areas. Since the last Air Quality Review and Assessment (Ref. 8), two new industrial processes, which are regulated for benzene namely, The Harbour Station in Lossiemouth and Victoria Filling Station in Forres have been identified. It was concluded that considering these new pollutant sources it was unlikely that emissions from any industrial processes within or outwith Moray were likely to cause an exceedence of the NAQS objective for benzene. A list of SEPA regulated processes is provided in Appendix 6.

### 3.5 Petrol Stations

The technical guidance document LAQM.TG(03) (Ref. 4) states that there is a potential for an exceedence of the 2010 objective for benzene where emissions from large petrol stations are combined with emissions from nearby busy roads.

A busy road is defined as a road with an annual average daily traffic flow greater than 30,000 vehicles per day. There are no roads within the Moray Council area with traffic flows exceeding this level, therefore it is considered unnecessary to assess emissions from petrol stations in isolation. It is unlikely therefore that there will be any exceedence of the 2010 benzene objective as a result of emissions from petrol stations.

SEPA confirmed that there are 13 regulated petrol stations within the Moray Council area, one of which is a harbour filling station. SEPA correspondence (Ref. 7) stated that there was no significant non-compliance of emission limit values at any of these sites.

### 3.6 Major Fuel Storage Depots

There are no major fuel depots situated within the Moray Council area therefore no consideration of emissions from major fuel depots has been made. The nearest two depots to Moray area are in Aberdeen and Inverness (Ref. 4) and are highly unlikely to have an impact on air quality in the Moray area.

### 3.7 Conclusion

Monitoring of benzene undertaken at Edinburgh Medical School indicates that the NAQS objectives for benzene are unlikely to be exceeded in urban locations. Ambient benzene concentrations in Moray are likely to be lower than those measured at the Edinburgh Medical School. It is therefore concluded that ambient benzene concentrations are unlikely to exceed NAQS objectives for benzene.

No emissions sources of benzene were identified that are considered likely to cause localised exceedences of NAQS objectives for benzene.

The technical guidance document LAQM.TG(03) (Ref. 4) states that national policy measures are expected to further reduce emissions of benzene, in particular by reducing the content of benzene in petrol. It is therefore considered unlikely that there will be any exceedence of NAQS objectives for benzene.

A detailed assessment for benzene is not required for Moray Council.

11

### 4 REVIEW AND ASSESSMENT FOR 1,3 BUTADIENE

The primary sources of 1,3-butadiene are vehicle emissions and industrial processes. Catalytic converters remove a high percentage of emissions of 1,3-butadiene from motor vehicles.

The first round of Review and Assessment of air quality within the Moray Council (Ref.5) concluded that it was unlikely that there would be an exceedence of air quality objectives for 1,3-butadiene. The Scottish Executive accepted this conclusion.

The air quality objective for 1,3-butadiene as set out in the Air Quality Regulations 2000 is presented in Table 6.

### Table 6 Air Quality Objectives for 1,3-butadiene

| Concentration          | Measured As         | Date to be Achieved by |
|------------------------|---------------------|------------------------|
| 2.25 μg/m <sup>3</sup> | Running annual mean | 31.12.03               |

The running annual mean therefore should not exceed 2.25  $\mu$ g/m<sup>3</sup> by the end of 2003.

An assessment of the impact of emission sources of 1,3-butadiene and available monitoring data is made in Sections 4.1 to 4.3.

### 4.1 Background Concentrations

NETCEN (Ref. 6) has mapped estimated annual mean background 1,3-butadiene concentrations for 2001 and 2003. The maps are included in Appendix 3. The estimated annual mean concentration for both years is significantly below 0.1  $\mu$ g/m<sup>3</sup>. The average 1,3-butadiene concentration, calculated from the NETCEN (Ref. 6) 1 x 1 km<sup>2</sup> database of background concentrations, for Moray area for 2003 is 0.0162  $\mu$ g/m<sup>3</sup>.

### 4.2 Monitoring Data

Moray Council does not undertake monitoring of 1,3-butadiene. The closest national network-monitoring site is at Edinburgh Medical School, an Urban Background site in Edinburgh. The maximum running annual mean concentrations measured at the site are presented in Table 7.

# Table 7 Maximum Running Annual Mean 1,3-butadiene ConcentrationsMeasured at Edinburgh Medical School

|                                                                                    | 1999 | 2000 | 2001 |
|------------------------------------------------------------------------------------|------|------|------|
| Maximum running annual mean 1,3 butadiene concentration ( $\mu$ g/m <sup>3</sup> ) | 0.21 | 0.19 | 0.20 |

The maximum running annual mean concentrations measured at Edinburgh Medical School are therefore below both of the NAQS objectives for 1,3-butadiene. 1,3-butadiene concentrations in Moray will be expected to be lower than those experienced at Edinburgh Medical School as Moray is more rural.

### 4.3 Industrial Sources

SEPA was consulted on emissions from industrial processes within Moray and neighbouring local authority areas (Ref. 7). None of the regulated industrial companies operating within Moray Council emitted 1,3-butadiene. It was concluded that it was unlikely that emissions from any industrial processes within or outwith Moray were likely to cause an exceedence of the NAQS objective for 1,3-butadiene. A list of SEPA regulated processes is provided in Appendix 6.

### 4.4 Conclusion

Monitoring of benzene undertaken at Edinburgh Medical School indicates that the NAQS objective for 1,3-butadiene is unlikely to be exceeded in urban locations. Ambient 1,3-butadiene concentrations in Moray are unlikely to be higher than those measured at the Edinburgh Medical School. It is therefore concluded that ambient 1,3-butadiene concentrations are unlikely to exceed NAQS objective levels.

No emissions sources were identified that are considered likely to cause a localised exceedence of the NAQS objective for 1,3-butadiene.

As with benzene the technical guidance document LAQM.TG(03) (Ref. 4) states that a number of national policy measures are expected to further reduce emissions of 1,3-butadiene from road vehicles.

It is therefore considered unlikely that there will be any exceedence of the NAQS objective for 1,3-butadiene.

A Detailed Assessment for 1,3-butadiene is not required for Moray.

### 5 REVIEW AND ASSESSMENT FOR LEAD

Since the addition of lead to petrol was banned in 2000, the principal source of lead is from industrial emissions.

The first round of Review and Assessment Air Quality Study for the Moray Council area (Ref. 5) concluded that it was unlikely that there would be an exceedence of air quality objectives for lead. The Scottish Executive accepted this conclusion.

The air quality objective for lead as set out in the Air Quality Regulations 2000 is presented in Table 8.

#### Table 8 Air Quality Objectives for Lead

| Concentration         | Measured As | Date to be Achieved by |
|-----------------------|-------------|------------------------|
| 0.5 μg/m <sup>3</sup> | Annual mean | 31.12.2004             |
| 0.25 μg/m³            | Annual mean | 31.12.2008             |

The running annual mean therefore must not exceed 0.5  $\mu$ g/m<sup>3</sup> by the end of 2004 and 0.25  $\mu$ g/m<sup>3</sup> by the end of 2008.

An assessment of the potential impact of emissions sources of lead and available monitoring data is made Sections 5.1 to 5.3.

### 5.1 Monitoring data

Moray Council does not undertake any monitoring for lead. There are no automatic monitoring stations for lead; however there are network batch monitoring stations for lead situated in Glasgow, Falkirk and Motherwell.

The monitoring site in Glasgow is situated in the east end of the city in an area that formerly contained a number of small foundries. No foundries are still in operation in the area, which is now mainly residential. The monitoring site in Motherwell is situated about 500m from a large steel mill and is adjacent to several main roads.

The monitoring data for all three sites are presented in Table 9. The levels recorded at the mobile station at Larbert in the Falkirk Council area recorded levels of  $<0.001 \mu g/m^3$ 

# Table 9 Annual Mean Lead-in-air Concentrations at Glasgow andMotherwell National Network Monitoring Sites

|                                    |            | 1999  | 2000   | 2001   |
|------------------------------------|------------|-------|--------|--------|
| Annual mean lead-in-air            | Glasgow    | 0.02  | 0.017  | 0.025  |
| concentration (µg/m <sup>3</sup> ) | Falkirk    | -     | <0.001 | <0.001 |
|                                    | Motherwell | 0.016 | 0.009  | 0.016  |

The annual mean lead-in-air concentration measured all three sites are therefore well below NAQS objective levels. The lead-in-air concentration in Moray would be expected to be lower than that experienced at the three monitoring sites.

### 5.2 Industrial Sources

SEPA was consulted (Ref. 7) on emissions from industrial processes within Moray and neighbouring Local Authority areas. It was concluded that it was unlikely that emissions from any industrial processes within or outwith Moray were likely to cause an exceedence of the NAQS objective for lead. A list of SEPA regulated processes is provided in Appendix 6.

### 5.3 Conclusion

Monitoring of lead undertaken in Glasgow, Motherwell and Falkirk indicates that the NAQS objective is unlikely to be exceeded in urban locations. Ambient lead concentrations in Moray are unlikely to be higher than those measured at any of the three sites. As lead in petrol is now banned, use of lead is now combined to certain industrial processes. Ambient lead concentrations are therefore expected to remain fairly constant in the future. Lead in air concentrations are not expected to rise and so it can be concluded that the objectives will also be met in 2004 and 2008.

No emissions sources were identified that are considered likely to cause a localised exceedence of the NAQS objective for lead.

It is therefore considered unlikely that there will be any exceedence of the NAQS objective for lead.

A Detailed Assessment for lead is not required for Moray Council.

### 6 REVIEW AND ASSESSMENT FOR NITROGEN DIOXIDE

Primary sources of nitrogen dioxide  $(NO_2)$  are from vehicle engines and combustion processes.  $NO_2$  is also generated by the reaction of oxides of nitrogen  $(NO_x)$  and atmospheric ozone  $(O_3)$ .

The Scottish Executive and SEPA raised concern about lack of NO<sub>2</sub> monitoring data included in the Air Quality Review Study for Moray Council (Ref. 5). The Supplementary Air Quality Report First Stage Review and Assessment for Moray Council (Ref. 8) made use of new data from nine diffusion tube monitoring locations in Moray and consulted SEPA on regulated processes. It concluded that it was unlikely that there would be an exceedence of air quality objectives for NO<sub>2</sub>. The Scottish Executive accepted this conclusion.

There are two air quality objectives for  $NO_2$ , an annual mean objective and an hourly objective, set out in the Air Quality Regulations 2000. The objectives are presented in Table 10.

### Table 10 Air Quality Objectives for Nitrogen Dioxide

| Concentration                        | Measured As | Date to be Achieved by |
|--------------------------------------|-------------|------------------------|
| 40 μg/m <sup>3</sup>                 | Annual mean | 31.12.2005             |
| 200 $\mu$ g/m <sup>3</sup> not to be | 1-hour mean | 31.12.2005             |
| exceeded more than 18                |             |                        |
| times a year                         |             |                        |

The annual mean concentration therefore should not exceed 40  $\mu$ g/m<sup>3</sup> by the end of 2005. In addition it should be predicted that there will be fewer than 18 hourly exceedences of 200  $\mu$ g/m<sup>3</sup> in a year by the end of 2005.

An assessment of the potential impact of emission sources of  $NO_2$  and available monitoring data is made in sections 6.1 to 6.6.

### 6.1 Background Concentration

AEA Technology NETCEN (Ref. 6) has mapped estimated annual mean background concentrations for both  $NO_x$  and  $NO_2$  for the years 2001, 2005 and 2010. The maps are included in Appendix 3.

The estimated annual mean  $NO_x$  concentration for all three years is below 20  $\mu$ g/m<sup>3</sup>. The maximum predicted  $NO_x$  concentration, taken from the NETCEN 1 x 1 km<sup>2</sup> background concentration database (Ref. 6), for the region occurring in 2001 is 10.9  $\mu$ g/m<sup>3</sup>. Future concentrations of  $NO_2$  were calculated using the factors supplied in Box.6.6 of the Technical

Guidance LAQM.TG(03) (Ref. 4). The NO<sub>2</sub> component of total NO<sub>x</sub> is predicted to be below 10  $\mu$ g/m<sup>3</sup> for all areas of Moray during 2001 but is predicted to fall to below 8  $\mu$ g/m<sup>3</sup> for the whole of the Council area by 2005.

### 6.2 Monitoring Data

Moray Council monitors  $NO_2$  at a number of sites within the area, all of which have been operational since 1999. Monitoring is undertaken using passive diffusion tubes. A discussion of the analysis of the diffusion tubes is discussed in Section 6.2.1 with the results presented in Section 6.2.2.

Additional automatic monitoring was conducted by SEPA in Rothes for two periods during February and May 2002 (Ref. 9). The site was chosen as it is in an area with a high density of distilleries, a busy road and within an area of relevant public exposure. The topography of the area surrounding the monitoring site is also prone to the formation of inversion layers, which accentuates atmospheric pollution within the vicinity at ground level.

### 6.2.1 QA/QC of Diffusion Tube Monitoring Data

The laboratory analysis of the passive diffusion tubes used by Moray Council is undertaken by Aberdeen City Council, Laboratory of the Public Analyst. Aberdeen City Council is UKAS accredited for the analysis of nitrogen dioxide diffusion tubes. It also participates in the Workplace Analysis Scheme for Proficiency (WASP) for NO<sub>2</sub> and the NETCEN NO<sub>2</sub> Network Quality Solutions Programme (Appendix 1: Correspondence). Aberdeen City Council changed the preparation of the diffusion tubes in 2001. Prior to 2001 diffusion tubes were prepared from 50% triethanolamine in acetone. Since 2001 NO<sub>2</sub> diffusion tubes are prepared from 20% triethanolamine in deionised water. The change in method is shown in Table 11 to have reduced the bias factor between the diffusion tube and automatic monitoring results, which indicates a greater accuracy.

Diffusion tube monitoring is not as accurate as continuous monitoring techniques. The technical guidance LAQM.TG(03) (Ref. 4) recommends that diffusion tubes should be colocated with chemiluminesence analysers to compare the results in order to validate the performance of the diffusion tubes and analysis technique. This performance is assessed by calculating laboratory bias and all diffusion tubes analysed at the same laboratory must have their results corrected to allow for the bias.

Three diffusion tubes analysed by Aberdeen City Council have been co-located with a chemiluminescent analyser at the Union Street automatic monitoring station since 2000. A bias correction factor between the diffusion tubes and the chemiluminescent analyser has

been calculated for the three years since. The bias correction factors were calculated using the methodology laid out in Box 6.4 of Technical Guidance LAQM.TG(03) (Ref. 4).

The results of the cross comparison of diffusion tube and automatic monitoring results are displayed in Table 11.

# Table 11 Cross Comparison of NO<sub>2</sub> Concentrations from the Union Street, Aberdeen Co-located Diffusion Tubes and Automatic NO<sub>2</sub> monitoring site

| Union Street | Annual Mean<br>of the three<br>Diffusion Tube<br>Concentrations<br>(µg/m <sup>3</sup> ) (Dm) | Annual Mean<br>Chemiluminescent<br>Concentration<br>(µg/m³) (Cm) | Bias<br>Adjustment<br>Factor<br>(Cm/Dm) | Diffusion<br>Tube Bias<br>(Dm-<br>Cm)/Cm |
|--------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|------------------------------------------|
| 2000         | 31.12                                                                                        | 49.8                                                             | 1.59                                    | -37.5 %                                  |
| 2001         | 41.46                                                                                        | 54.93                                                            | 1.32                                    | -24.5 %                                  |
| 2002         | 37.78                                                                                        | 49.49                                                            | 1.31                                    | -23.7 %                                  |

The diffusion tubes therefore under predicted the ambient  $NO_2$  concentration in comparison with the chemiluminescent analysers during 2000, 2001 and 2002. A factor of 1.59 has been be applied to diffusion tube results for 2000, a factor of 1.32 applied to results from 2001 and a factor of 1.31 to results from 2002, reported in Section 6.2.2.

### 6.2.2 Monitoring Results

Moray Council has conducted monitoring of  $NO_2$  using diffusion tubes at ten sites since 2000. The site locations and descriptions are presented in Table 12. The locations are plotted on Figure 2 in Appendix 2.

| Site        | Location                      | Classification   | Ordnance<br>Survey Grid<br>Reference |
|-------------|-------------------------------|------------------|--------------------------------------|
| Elgin 1     | Lamp Post West Park Court     | Kerbside         | NJ212626                             |
| Elgin 2     | Junction East & Maisondieu Rd | Kerbside         | NJ224627                             |
| Elgin 3     | 99-101 Maisondieu Road        | Roadside         | NJ223627                             |
| Elgin 4     | 26-28 Priory Place            | Urban Background | NJ223626                             |
| Elgin 5     | Main Street New Elgin         | Kerbside         | NJ223618                             |
| Fochabers 1 | 50A High Street               | Kerbside         | NJ345588                             |
| Fochabers 2 | Sunndach George Street        | Urban Background | NJ343587                             |
| Forres      | Tolbooth, High Street         | Roadside         | NJ034587                             |
| Keith 1     | 106 Moss Street               | Roadside         | NJ433507                             |
| Keith 2     | 87 Moss Street                | Roadside         | NJ432507                             |

### Table 12 NO<sub>2</sub> Diffusion Tube Monitoring Sites in Moray since 1999

The monitoring locations were selected to provide monitoring data from several key areas within Moray:

- monitoring at the most heavily trafficked roads within Elgin town centre at Elgin1, Elgin2, Elgin3 and Elgin5;
- Urban Background concentration at Elgin4 and Fochabers2; and
- monitoring on the main roads through the other towns and villages within Morayshire at Fochabers1, Forres, Keith1 and Keith2.

The  $NO_2$  concentrations measured at these sites are presented in Table 13. The concentrations have been adjusted for laboratory bias.

| Monitoring Site | Annual Mean NO <sub>2</sub><br>Concentration ( $\mu$ g/m <sup>3</sup> ) |      | Data C | apture Ra | te (%) |      |
|-----------------|-------------------------------------------------------------------------|------|--------|-----------|--------|------|
|                 | 2000                                                                    | 2001 | 2002   | 2000      | 2001   | 2002 |
| Elgin 1         | 19.8                                                                    | 17.1 | 23.4   | 92        | 100    | 83   |
| Elgin 2         | 13.8                                                                    | 12.3 | 15.9   | 100       | 100    | 83   |
| Elgin 3         | 9.5                                                                     | 7.6  | 10.5   | 100       | 92     | 83   |
| Elgin 4         | 7.0                                                                     | 6.2  | 6.9    | 100       | 100    | 83   |
| Elgin 5         | 20.7                                                                    | 9.1  | 14.1   | 8         | 92     | 58   |
| Fochabers 1     | 16.6                                                                    | 16.1 | 21.6   | 92        | 92     | 83   |
| Fochabers 2     | 4.9                                                                     | 4.3  | 4.1    | 83        | 67     | 75   |
| Forres          | 11.1                                                                    | 10.6 | 12.6   | 100       | 100    | 83   |
| Keith 1         | 15.0                                                                    | 14.8 | 18.6   | 100       | 92     | 83   |
| Keith 2         | 14.0                                                                    | 12.0 | 15.5   | 100       | 100    | 83   |

### Table 13 NO<sub>2</sub> Monitoring Results

The monitoring results indicate that the  $NO_2$  concentrations are well below the NAQS annual mean objective for  $NO_2$ . The data capture rates for the diffusion tubes vary with all but two sites having a data capture rate greater than 83% between 2000 and 2002.

There is no overall downward trend in  $NO_2$  concentration between 2000 and 2002. The concentrations monitored at the kerbside and roadside monitoring sites on the arterial routes in Moray have increased, whilst the concentrations measured at the background sites and those at the outlying towns and villages have remained fairly constant.

The technical guidance LAQM.TG(03) (Ref. 4) suggests that meeting the 2005 annual mean objective is expected to be more demanding than meeting the hourly mean objective. No hourly monitoring data is available for Moray. As the annual mean objective has been met it is considered unlikely that the hourly mean objective will be exceeded.

The additional NO<sub>2</sub> sampling carried out by SEPA revealed that for the period of the study ambient air levels of NO<sub>2</sub> in Rothes did not exceeded the limits set out in the Air Quality Objectives (Ref. 9). Maximum hourly concentrations of recorded NO<sub>2</sub> were less than 17% of the 1 hour mean limit. Rothes is situated on the A941, which is not the busiest road in Moray, but it is in an area with a high density of distilleries. The values recorded may not be fully representative of the NO<sub>2</sub> concentrations expected around busy junctions along the A96, but give supporting evidence of compliance with the NO<sub>2</sub> objectives throughout Morayshire.

The annual mean concentration is expected to decrease by a further 9% between 2002 and 2005 at roadside and kerbside locations, mainly due to improvements in engine efficiency and technology (Ref. 4).

The monitored concentrations presented in Table 14 indicate that it is unlikely that there will be any exceedence of NAQS objectives for  $NO_2$ .

While monitoring has been chosen to check concentrations at potential hot-spots, road traffic and industrial sources are considered further in Sections 6.3 and 6.4.

### 6.3 Road Traffic

In the first round stage 1 Air Quality Review Study no consideration was made to emissions from road traffic in Moray. The Supplementary Air Quality Report First Stage Review and Assessment Report (Ref. 8) carried out assessment using the nomograms contained in Technical guidance document LAQM.TG(00) (Ref. 12). After consultation with Moray Council Roads Department two road junctions, Spey Bay and South College Street, Elgin, were analysed and were predicted to have emissions unlikely to cause an exceedence of air quality objectives for NO<sub>2</sub>.

A revised version of DMRB has been issued which provides a more conservative assessment of road traffic emissions (Ref. 10) In addition the DMRB model has been found to underestimate significantly the pollutant concentrations in street canyons. Technical guidance LAQM.TG(03) (Ref. 4) suggests therefore that traffic flows of as low as 10,000 vehicles per day can cause an exceedence of air quality objectives within congested conditions.

A table of annual average daily traffic flow and average vehicle speeds for the roads in Moray is included in Appendix 4.

Since the last round of Review and Assessment there have been no new roads constructed, although a significant increase in traffic on existing roads was predicted by 2005 due to

proposed employment and industrial developments. The construction of the Fochabers / Mosstodloch bypass anticipated to commence in 2003 (Ref. 8) is subject to a Public Inquiry scheduled for late 2003. Any increased traffic impacts as a result of this development can therefore not be determined until after the public inquiry. An assessment was made of the most heavily trafficked junctions within Moray. Technical Guidance LAQM.TG(03) (Ref. 4) indicates that for areas with a predicted 2005 background concentration of less than 15 µg/m<sup>3</sup> consideration should be made of all roads and junctions with an Annual Average Daily Total (AADT) greater than 10,000. Two junctions and one roundabout were assessed using DMRB. The roads assessed included the most heavily trafficked road in Moray, namely the A96. Two roads correspond to those investigated in the Supplementary Air Quality Report (Ref. 8). Spey Bay represents a road junction with a high proportion, 12%, of Heavy Goods Vehicles. North College Street junction in Elgin indicates a busy junction within an urban centre. Queen Street roundabout in Elgin also exhibited a predicted total traffic flow for 2010 greater than 10,000 AADT so is included within the DMRB assessment.

The traffic flows at junctions assessed in the DMRB assessment are shown in Table 14, and the roads are highlighted on the map Figure 3 in Appendix 2.

| Junction                               | Traffic Fl |       |       | % Heavy           | Nearest  |
|----------------------------------------|------------|-------|-------|-------------------|----------|
|                                        | 1998       | 2005  | 2010  | Goods<br>Vehicles | Receptor |
| A96 N College<br>St, Elgin             | 18374      | 21681 | 23151 | 8                 | 10 m     |
| A96 Spey Bay<br>Junction,<br>Fochabers | 12006      | 14167 | 15128 | 12                | 100 m    |
| A96 Queen St                           | 18374      | 21682 | 23151 | 8                 | 10 m     |
| roundabout,                            | 8669       | 10230 | 10923 | 8                 |          |
| Elgin                                  | 518        | 612   | 661   | 7                 |          |

Table 14 Traffic Flows at Junctions Assessed using DMRB Assessment

In order to ensure that no underestimation was made of the emissions from road traffic, the receptors were assumed to be within 5 metres of each junction. The assessment considered average traffic speeds of 10 and 20 miles per hour (mph) to account for the slowing of traffic at the junction.

A summary of the results of the assessment is presented in Table 15 with the full assessment contained in Appendix 5.

| Road / Junction                       | Predicted Annual Mean<br>NO <sub>2</sub> Concentration<br>(μg/m <sup>3</sup> ) at 10 mph |       | Predicted An<br>NO₂ Concent<br>(μg/m³) at 2 | ration |
|---------------------------------------|------------------------------------------------------------------------------------------|-------|---------------------------------------------|--------|
|                                       | 2005                                                                                     | 2010  | 2005                                        | 2010   |
| A96 North College St, Elgin           | 20.29                                                                                    | 15.89 | 17.29                                       | 13.54  |
| A96 Spey Bay Junction,<br>Fochabers   | 18.84                                                                                    | 14.72 | 15.88                                       | 12.40  |
| A96 Queen Street<br>Roundabout, Elgin | 25.95                                                                                    | 20.52 | 22.18                                       | 17.50  |

### Table 15 Summary of DMRB Assessment of Roads within Moray

The results of the DMRB assessments therefore indicate that no road traffic emissions were identified as likely to cause an exceedence of the annual mean NAQS objective for NO<sub>2</sub>. As the roads considered represent worst case roads, no other roads within Moray are expected to cause exceedence of NAQS objectives for NO<sub>2</sub>.

### 6.4 Industrial Sources

In the first round of Review and Assessment it was concluded that it was unlikely that emissions from any industrial processes would result in an exceedence of NAQS objectives for  $NO_2$ .

SEPA was consulted (Ref. 7) as to whether there have been any new industrial processes or significant changes to emissions from existing processes since the last Review and Assessment (A copy of the correspondence is included in Appendix 2). The SEPA response highlighted an increase in operating capacity of the animal carcass incineration process at Douglas Brae Knackery in Keith. This results from the installation of two additional incinerators in 2001 and 2002 respectively. However, SEPA confirmed compliance of emission limit values and that there is unlikely to be any exceedence of NAQS objectives for NO<sub>2</sub> as a result of emissions from industrial processors in Moray. A list of SEPA regulated processes is provided in Appendix 6.

### 6.5 Air Traffic

There are no airports exceeding the 10 million people per annum limit set out in the technical guidance LAQM.TG(03) (Ref. 4) situated within Moray therefore no assessment of emissions from air traffic has been made. Moray Council has communicated that concerns have been raised by local residents in the form of a petition and complaints regarding atmospheric pollution from the two RAF airbases (Appendix 1. Correspondence). No emissions data for either RAF airfield is available for assessment. However Moray Council has gained approval from Committee to monitor aircraft odour and further monitoring of air quality with a view to determining the impact of aircraft emissions. In January 2003 Moray

Council installed two  $NO_2$  diffusion tubes to monitor air quality around RAF Lossiemouth. One is located at 1 Merryton Court in close proximity to the boundary of RAF Lossiemouth and one is placed at 27 James Street on the east side of Lossiemouth. Preliminary results for  $NO_2$  concentrations have been low (Appendix 1 Correspondence).

### 6.6 Conclusion

Monitoring of  $NO_2$  undertaken throughout the Moray Council area indicates that the NAQS objective is unlikely to be exceeded in urban locations. It is therefore concluded that ambient  $NO_2$  concentrations are unlikely to exceed NAQS objective levels.

No emissions sources were identified that are considered likely to cause a localised exceedence of the NAQS objective for nitrogen dioxide.

It is therefore considered unlikely that there will be any exceedence of the NAQS objective for nitrogen dioxide.

A Detailed Assessment for nitrogen dioxide is not required for the Moray Council area.

### 7 REVIEW AND ASSESSMENT OF SULPHUR DIOXIDE

The principal source of emissions of sulphur dioxide (SO<sub>2</sub>) is from coal-fired power stations and other industrial combustion sources. Emissions from motor vehicles are minimal in comparison.

The first round Supplementary Review and Assessment of air quality within the Moray Council area (Ref. 8) concluded that it was unlikely that there would be an exceedence of air quality objectives for SO<sub>2</sub>. The Scottish Executive accepted this conclusion.

There are three air quality objectives for  $SO_2$ , an hourly mean objective, a 24-hour objective and a 15-minute mean objective, set out in the Air Quality Regulations 2000. The objectives are presented in Table 16.

### Table 16 Air Quality Objectives for Sulphur Dioxide

| Concentration                                      | Measured As    | Date to be<br>Achieved by |
|----------------------------------------------------|----------------|---------------------------|
| 350 $\mu$ g/m <sup>3</sup> not to be exceeded more | 1-hour mean    | 31.12.2004                |
| than 24 times per year                             |                |                           |
| 125 µg/m <sup>3</sup> not to be exceeded more      | 24-hour mean   | 31.12.2004                |
| than 3 times a year                                |                |                           |
| 266 $\mu$ g/m <sup>3</sup> not to be exceeded more | 15-minute mean | 31.12.2005                |
| than 35 times a year                               |                |                           |

The predicted ground level concentration therefore should not exceed 350  $\mu$ g/m<sup>3</sup> on more than 24 hourly periods by the end of 2005. In addition, the predicted 24-hour mean value should not exceed 125  $\mu$ g/m<sup>3</sup> on more than three occasions by the end of 2004, and the 15-minute mean level should not exceed 266  $\mu$ g/m<sup>3</sup> on more than 35 occasions per year by the end of 2005.

An assessment of the impact of emission sources of  $NO_2$  and available monitoring data is made in Sections 7.1 to 7.7.

### 7.1 Background Concentration

NETCEN has mapped estimated annual mean background concentrations for  $SO_2$  during 2001 (Ref. 6). The map is included in Appendix 3.

The estimated annual mean  $SO_2$  concentration in Moray in 2001 is below 2  $\mu$ g/m<sup>3</sup>. Technical guidance LAQM.TG(03) (Ref.4) suggests that the annual mean  $SO_2$  background concentration at the end of 2004 and 2005 will be 75% of the 2001 concentration. The background annual mean concentration during 2004 and 2005 is therefore predicted to be

less than 2  $\mu$ g/m<sup>3</sup>. The annual mean background concentration of SO<sub>2</sub>, calculated from the NETCEN 1 X 1 km<sup>2</sup> background concentration database (Ref. 6), averaged for the Moray area in 2001 is 0.659  $\mu$ g/m<sup>3</sup>. Using the factor of 0.75 given in the technical guidance LAQM.TG(03) (Ref. 1) the annual mean background SO<sub>2</sub> concentration for Moray in 2004 is 0.494  $\mu$ g / m<sup>3</sup>.

### 7.2 Monitoring Data

Moray Council does not undertake any automatic continuous monitoring of  $SO_2$  comparable with the 15 minute mean and 1 hour mean objectives. The Council has monitored since January 1999 using passive diffusion tubes. The diffusion tube technique is not validated and as the monitoring averaging period is 4 weeks the results are not comparable with NAQS objectives for  $SO_2$ . The monitoring results can therefore be used as an indicator of air quality but, not directly compared with NAQS objectives.

The diffusion tube monitoring results are presented in Table 17. The monitoring locations are plotted in Figure 2 of Appendix 2.

|                     | Annual Mean SO <sub>2</sub><br>Concentration (µg/m <sup>3</sup> ) |       |      | Data C | apture Ra | te (%) |
|---------------------|-------------------------------------------------------------------|-------|------|--------|-----------|--------|
|                     | 2000                                                              | 2001  | 2002 | 2000   | 2001      | 2002   |
| Priory Place, Elgin | 1.75                                                              | 14.16 | 0.98 | 100    | 100       | 100    |
| Spey Drive, Rothes  | 4.10                                                              | 12.82 | 2.35 | 100    | 92        | 100    |

### Table 17 Annual Mean SO<sub>2</sub> Concentrations and Capture Rates

The results therefore indicate that the highest  $SO_2$  concentrations are measured in the town of Elgin. The results although not directly comparable are substantially lower than any of the NAQS objectives for  $SO_2$ .

No quality assurance or validation is available for the diffusion tubes therefore no conclusions for Moray Council have been taken from its results.

Additional automatic monitoring of  $SO_2$  was conducted by SEPA during two periods in February and May 2002 at Rothes. The location was chosen because it is in an area with a high density of distilleries and residential areas where there will be relevant public exposure. The result of local topography is that the area is prone to inversion layers which accentuate the impact of atmospheric emissions at ground level. The results from this study are not directly comparable to the air quality objectives but provide supplementary evidence of low  $SO_2$  values. Throughout the monitoring periods the  $SO_2$  peak levels did not exceed 6% of the 15-minute mean limit, 5% of the 1 hour mean limit and 5% of the 24hour mean limit. These figures support the view that  $SO_2$  levels are unlikely to be exceeded within urban areas of Moray (Ref. 9). The neighbouring Councils of Aberdeenshire and Aberdeen City both undertake SO<sub>2</sub> monitoring.

Aberdeen City Council operates an automatic real-time analyser which gives results which are directly comparable with the NAQS objectives for SO<sub>2</sub>. The monitoring station in Aberdeen is positioned to measure urban area emissions therefore the results from these sites will not be applicable to all the Moray Council area. The results from the Aberdeen monitoring station recorded no exceedences between 2000 and 2002 of any of the NAQS objectives.

Since Aberdeen is subjected to higher concentrations than would be expected within the Moray Council area, particularly from industrial sources, then it can be concluded that the ambient  $SO_2$  concentrations within the Moray Council area is unlikely to exceed NAQS objective levels for  $SO_2$ .

Any potential exceedence of the NAQS objective for  $SO_2$  is therefore expected to be due to pollution hotspots. The emissions sources with the potential to cause pollution hotspots of  $SO_2$  are industrial sources and domestic/commercial coal burning. These are considered in Sections 7.3 and 7.5.

### 7.3 Industrial Sources

In the first round of Review and Assessment it was concluded that it was unlikely that emissions from any industrial processes were likely to result in an exceedence of NAQS objectives for SO<sub>2</sub>.

SEPA was consulted (Ref. 7) as to whether there have been any new industrial processes or significant changes to emissions from existing processes. A copy of the correspondence is included in Appendix 2.

SEPA correspondence stated that the only industrial processor in Moray regulated for SO<sub>2</sub> concentrations is a road stone coating process, namely Ennstone Thistle Ltd located in Elgin. A list of SEPA regulated processes is provided in Appendix 6.

SEPA correspondence confirmed that currently there is "no significant non-compliance with emission limit values" at any of the SEPA-regulated sites within the Moray area.

It is therefore concluded that there will be no exceedence of NAQS objectives for  $SO_2$  as a result of emissions from either industrial process.

### 7.4 Domestic Coal Burning

Technical guidance LAQM.TG(03) (Ref. 4) indicates that local exceedences of  $SO_2$  objectives may occur in areas of concentrated coal burning. Concentrated areas are defined as those with more than 100 properties coal burning in an area of 500m by 500m.

It is expected that the only areas where a sufficient density of coal burning houses exist will be in areas of old council housing stock i.e. those built circa 1950 or pre-world war II. Modern housing is unlikely to be built with coal fires except in individual circumstances.

A survey undertaken by Moray Council Housing Service for 2002/03 suggests that there are no areas of concentrated coal burning. The survey only included current Council housing stock at that time and did not include former council housing. It is assumed that former housing stock, have been converted to gas or electric heating by the owners.

The areas with the highest densities of coal burning properties found within Moray are presented in Table 18, and mapped in Figure 4 in Appendix 2.

| Area        | Number of Coal<br>Burning<br>Properties | Approximate<br>area (km²) | Number of<br>properties per<br>0.25 km <sup>2</sup> |
|-------------|-----------------------------------------|---------------------------|-----------------------------------------------------|
| Burghead    | 61                                      | 0.32 km <sup>2</sup>      | 48                                                  |
| Forres      | 82                                      | 3.46 km <sup>2</sup>      | 6                                                   |
| Lossiemouth | 85                                      | 1.74 km <sup>2</sup>      | 13                                                  |

 Table 18 Density of Coal-burning Properties within Moray

From the information available, the number of coal burning properties therefore does not exceed 100 houses per 0.25 km<sup>2</sup>, given as the density limit in the technical guidance LAQM.TG(03) (Ref. 4). It is therefore considered unlikely that there will be any exceedence of NAQS objectives for  $SO_2$  as a result of emissions from domestic coal burning.

### 7.5 Small Boilers

An inventory of small boilers within Moray burning coal or oil with a thermal throughput greater than 5 megawatts (MW) was undertaken by Entec UK on behalf of the Scottish Executive in 2000 (Ref. 11). One small boiler was identified at Grampian University Hospital Trust. The nearest sensitive receptor where relevant public exposure might be expected is the hospital grounds themselves. The predicted SO<sub>2</sub> concentration for the 15 minutes mean (adjusted for a 5  $\mu$ g/m<sup>3</sup> background concentration) was 212  $\mu$ g/m<sup>3</sup>, which is below the 15 minute mean objective level for SO<sub>2</sub>. The modelled 1 hour mean SO<sub>2</sub> concentration (adjusted for a 5  $\mu$ g/m<sup>3</sup> background concentration) is 158  $\mu$ gm<sup>3</sup>, which is also below the 1 hour SO<sub>2</sub> mean objective of 350  $\mu$ g/m<sup>3</sup>.

It is therefore considered unlikely that there will be any exceedence of NAQS SO<sub>2</sub> objectives as a result of emissions from small boiler plant.

### 7.6 Shipping

Technical guidance LAQM.TG(03) (Ref. 4) states that where shipping movements exceed 5000 per year there is the potential for an exceedence of the 15-minute NAQS objective. It must be established whether or not there is relevant exposure within 1km of the berths and main areas of manoeuvring. A review of shipping movements should be confined to large ships such as cross-channel ferries and container ships.

There are residential areas within 1 km of the ports in Moray so the potential for relevant exposure exists. However the majority of harbours and ports in Moray Council area along the south bank of the Moray Firth are small and have no significant shipping movements. Buckie is the largest port with some cargo ship operations. The technical guidance LAQM.TG(03) (Ref. 4) states that a review of shipping should be confined to cross-channel ferries, Ro-Ro, container ships and cruise liners therefore no assessment of emissions from shipping has been made.

### 7.7 Railways

The only passenger rail line through the Moray Council area is the main line connecting Inverness to Aberdeen. The line passes through three stations within the Moray Council area, at Elgin, Keith and Forres.

Technical guidance LAQM.TG (03) (Ref. 4) states that there is potential for an exceedence of NAQS objectives for  $SO_2$  where locomotives are stationary with their engines running for periods of 15-minutes or more. Where this is true for on more than two occasions per day then Local authorities are instructed to progress to a detailed assessment.

Consultation with Scotrail confirmed that the trains serving these lines are mainly diesel with newer trains fitted with Euro 3 standard engines. Scotrail stated that trains would not be expected to be stationary for periods of 15 minutes or longer at any location within Moray Council. All Scotrail trains are fitted with automatic engine shutdown mechanisms when the driver removes his key from the control panel.

It is considered unlikely that there will be stationary locomotives with their engines running for periods of 15 minutes at any location within the Moray region due to the fact that there are no terminal stations.

It is therefore unlikely that there will be an exceedence of the 15-minute objective for  $SO_2$  as a result of emissions from railway locomotives.

### 7.8 Conclusion

Monitoring of  $SO_2$  undertaken by Aberdeen Council indicates that NAQS objectives are unlikely to be exceeded in urban background locations where there is no significant influence of industrial emissions. Ambient  $SO_2$  concentrations in Moray are unlikely to be higher than those measured within Aberdeen. It is therefore concluded that ambient  $SO_2$ concentrations are unlikely to exceed NAQS objective levels.

No emissions sources were identified that are considered likely to cause a localised exceedence of the NAQS objectives for SO<sub>2</sub>.

It is therefore considered unlikely that there will be any exceedence of the NAQS objectives for  $SO_2$ .

A Detailed Assessment for SO<sub>2</sub> is therefore not required for Moray.

### 8 REVIEW AND ASSESSMENT FOR PARTICLES (PM<sub>10</sub>)

 $PM_{10}$  comprises a variety of substances of less than 10 microns ( $\mu$ m) in diameter.

 $PM_{10}$  is produced from a variety of sources. The principal sources are road transport, combustion processes and quarrying and mining.  $PM_{10}$  can also arise from a variety of natural sources including sea salt, pollen grains and biological particles.

 $PM_{10}$  can be classified as being either primary or secondary. Primary sources are released directly into the atmosphere from combustion processes, whilst secondary sources are formed by chemical reaction in the atmosphere. The formation of secondary particles can occur a distance away from their origin. The smaller particles (<2 µg/m<sup>3</sup>) are defined as fine whilst larger diameter particles (2-10 µg/m<sup>3</sup>) are defined as being coarse.

In the first round of Review and Assessment the Supplementary Air Quality Report for the Moray Council area (Ref. 8) concluded that it was unlikely that there would be an exceedence of air quality objectives for  $PM_{10}$ . The Scottish Executive accepted this conclusion.

There are two air quality objectives for  $PM_{10}$  set out in the Air Quality Regulations 2000, an annual mean objective and a daily mean objective. In addition, the Scottish Executive has set in place stricter objectives to be achieved by 2010. The objectives are presented in Table 19.

| Concentration                       | Measured As  | Date to be Achieved by |
|-------------------------------------|--------------|------------------------|
| 40 μg/m <sup>3</sup>                | Annual mean  | 31.12.2004             |
| 18 μg/m³                            | Annual mean  | 31.12.2010             |
| 50 $\mu$ g/m <sup>3</sup> not to be | 24-hour mean | 31.12.2004             |
| exceeded more than 35               |              |                        |
| times per year                      |              |                        |
| 50 $\mu$ g/m <sup>3</sup> not to be | 24-hour mean | 31.12.2010             |
| exceeded more than 7                |              |                        |
| times a year                        |              |                        |

### Table 19 Air Quality Objectives for Particles

The predicted annual mean concentration therefore should not exceed 40  $\mu$ g/m<sup>3</sup> by the end of 2004 and 18  $\mu$ g/m<sup>3</sup> by the end of 2010. In addition it should be predicted that there will be fewer than 35 24-hourly exceedences of 50  $\mu$ g/m<sup>3</sup> in a year by the end of 2004 and less than 7 by the end of 2010.

An assessment of the impact of emission sources of  $PM_{10}$  and available monitoring data is made in Sections 8.1 to 8.7.

### 8.1 Background Concentration

NETCEN has mapped estimated annual mean background concentrations for primary  $PM_{10}$  concentrations during 2001, 2004 and 2010 and secondary  $PM_{10}$  concentrations for 2001 (Ref. 6). The maps are included in Appendix 3.

The estimated primary annual mean  $PM_{10}$  concentration in 2001 is below 15 µg/m<sup>3</sup>. The maximum predicted annual mean background concentration, taken from the NETCEN 1 x 1 km<sup>2</sup> background concentration database (Ref. 6), occurring within Moray area for 2001 is 14.2 µg/m<sup>3</sup>. The factors provided in Box.8.7 of the Technical Guidance LAQM.TG (03) (Ref. 4) were used to calculate the background PM<sub>10</sub> concentrations for 2004 and 2010. The background concentration is predicted to be below 15µg/m<sup>3</sup> in 2004 and 2010. The annual mean primary PM<sub>10</sub> estimation in 2010 averaged for the whole of the Moray region, calculated from the NETCEN 1 x 1 km<sup>2</sup> background concentration database (Ref. 6) gives a value of 11.5 µg/m<sup>3</sup>.

The estimated secondary annual mean concentration in 2001 was below 3  $\mu$ g/m<sup>3</sup>. It is assumed that secondary PM<sub>10</sub> concentration will remain constant until 2010.

The total background concentration during 2004 is therefore predicted to be below 18  $\mu$ g/m<sup>3</sup> in both 2004 and 2010.

The predicted background concentration is fairly uniform throughout the council area.

### 8.2 Monitoring Data

Moray Council does not undertake any monitoring of  $PM_{10}$ .

The closest national network monitoring site to Moray is in Aberdeen. The monitoring site in Aberdeen is classified as an Urban Background site. Concentrations within Moray are unlikely to be as high as those measured at Aberdeen due to larger traffic flows in Aberdeen. The annual mean concentrations and number of exceedences of the 24-hour mean objective measured at Aberdeen are presented in Table 20.

# Table 20 Annual Mean PM<sub>10</sub> Concentrations measured at Aberdeen National Monitoring Site

|                                                | 2000 | 2001 |
|------------------------------------------------|------|------|
| Annual mean concentration (µg/m <sup>3</sup> ) | 19   | 15   |
| No. of 24-hour mean exceedences                | 3    | 2    |

The  $PM_{10}$  is monitored at Aberdeen using a Tapered Oscillating Element Microbalance (TEOM) analyser. TEOM analysers have been found to underestimate  $PM_{10}$  concentration in

comparison to gravimetric monitoring techniques. The TEOM concentrations have therefore been factored by 1.3 to account for the under-estimation and to compare with the objectives, which are based on gravimetric methods. The analyser continuously measures the  $PM_{10}$  concentration and averages the concentration over hourly periods. The 24-hour concentration is then averaged.

The concentrations measured at the Aberdeen site are slightly higher, particularly during 2001, than the predicted background annual mean concentration for Moray from the NETCEN maps. The concentrations measured indicate that the ambient concentrations will meet both 2004 and 2010 objectives for  $PM_{10}$ . Urban ambient concentrations within Moray will be expected to be lower than those measured at Aberdeen.

Any exceedence of the NAQS objective for  $PM_{10}$  will therefore be a result of a pollution hotspot. The emissions sources that could cause a pollution hot-spot are therefore considered in the following sections.

#### 8.3 Road Traffic

In the First Round Stage 1 Review and Assessment report (Ref. 8) consideration was made of emissions from roads in Moray. Assessment was made using the nomograms contained in Technical Guidance document LAQM.TG(00) (Ref. 4) and the model laid out in the Design Manual for Roads and Bridges (DMRB model) (Ref. 10). No roads were predicted to have emissions likely to cause an exceedence of air quality objectives for PM<sub>10</sub>.

A revised version of DMRB (Ref.12) has been issued for LAQM in 2003 which provides a more conservative assessment of road traffic emissions Technical guidance LAQM.TG(03) (Ref. 4) states that busy roads or junctions should be assessed using the DMRB model. Busy roads and junctions are those with a combined AADT flow in excess of 10,000 vehicles per day in 2004 and an AADT flow of 5,000 vehicles per day in 2010.

A table of annual average daily traffic flow and average vehicle speeds for the roads in Moray is included in Appendix 4.

Whilst there have been no new roads constructed since the last Review and Assessment, significant increases in traffic on some existing roads was predicted by 2005 due to planned employment developments. The construction of the Fochabers / Mosstodloch bypass anticipated to commence in 2003 (Ref. 8) is subject to a Public Inquiry scheduled for late 2003. Any increased traffic impacts as a result of this development can therefore not be determined until after the public inquiry. An assessment was made of the most heavily trafficked junctions within Moray. All junctions along the most heavily trafficked road in Moray, namely the A96, were monitored. Two junctions and one roundabout were assessed

using DMRB. Traffic flows for assessed junctions are shown in Table 21. The roads are highlighted on the map in Figure 3 in Appendix 2.

| Junction                            | Traffic Fl<br>1998                     | ow AADT<br>2004 2010 |       | % Heavy<br>Goods<br>Vehicles | Nearest<br>Receptor |  |
|-------------------------------------|----------------------------------------|----------------------|-------|------------------------------|---------------------|--|
| A96 N College St,<br>Elgin          | 18374                                  | 21314                | 23151 | 8                            | 10 m                |  |
| A96 Spey Bay<br>Junction, Fochabers | 12006                                  | 13927                | 15128 | 12                           | 100 m               |  |
| A96 Queen St                        | 18374                                  | 21314                | 23151 | 8                            | 10 m                |  |
| roundabout, Elgin                   | oundabout, Elgin 8669 10056<br>518 601 |                      | 10923 | 8                            |                     |  |
|                                     |                                        |                      | 661   | 7                            |                     |  |

#### Table 21 Roundabout and Junctions Assessed Using DMRB Assessment

In order to ensure that no underestimation was made of the emissions from road traffic the receptors were assumed to be within 5 metres of each junction. The assessment considered average traffic speeds of 10 and 20 miles per hour (mph) to account for the slowing of traffic at the roundabout.

A summary of the results of the assessment for 2004 is presented in Table 22 and a summary of the assessment for 2010 in Table 23. The full DMRB assessment is contained within Appendix 5.

# Table 22 Summary of 2004 $\ensuremath{\text{PM}_{10}}$ DMRB Assessment of Roads within Moray

| Road / Junction                     | d / Junction Traffic Spe<br>Annual Mean<br>Concentration<br>(µg/m <sup>3</sup> ) |    | Traffic Spe<br>Annual Mean<br>Concentration<br>(μg/m <sup>3</sup> ) | ed 20 mph<br>Number of 24-<br>hour mean<br>Exceedences |  |
|-------------------------------------|----------------------------------------------------------------------------------|----|---------------------------------------------------------------------|--------------------------------------------------------|--|
| A96 N College St,<br>Elgin          | 26.02                                                                            | 15 | 22.67                                                               | 8                                                      |  |
| A96 Spey Bay<br>Junction, Fochabers | 23.34                                                                            | 11 | 21.36                                                               | 6                                                      |  |
| A96 Queen St<br>roundabout, Elgin   | 31.55                                                                            | 34 | 26.55                                                               | 17                                                     |  |

| Road / Junction                         | Traffic Spe                                          | ed 10 mph                                 | Traffic Speed 20 mph                                 |                                           |  |  |
|-----------------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------------|-------------------------------------------|--|--|
|                                         | Annual Mean<br>Concentration<br>(µg/m <sup>3</sup> ) | Number of 24-<br>hour mean<br>Exceedences | Annual Mean<br>Concentration<br>(µg/m <sup>3</sup> ) | Number of 24-<br>hour mean<br>Exceedences |  |  |
| A96 N College St,<br>Elgin              | 20.70                                                | 5                                         | 18.97                                                | 3                                         |  |  |
| A96 Spey Bay<br>Junction, Fochabers     | 19.63                                                | 3                                         | 18.11                                                | 2                                         |  |  |
| A96 Queen St 23.78<br>roundabout, Elgin |                                                      | 10                                        | 21.20                                                | 6                                         |  |  |

| Table 23 Summary of 2010 PM <sub>10</sub> DMRB Assessment of Road Traffic |
|---------------------------------------------------------------------------|
| Emissions within Moray                                                    |

The results of the DMRB assessments therefore indicate that by the end of 2004 the annual mean  $PM_{10}$  objective is unlikely to be exceeded as a result of road traffic emissions. The fixed 24-hour objective is exceeded for the Queen Street Roundabout in Elgin when considering traffic travelling at low speeds. Queen Street is the busiest road junction featured in the traffic survey and 34 exceedences of the 24 hour objective were predicted compared to the permissible level of 35. The DMRB assessment for 2010 predicts that there will be exceedences of the annual mean  $PM_{10}$  objective at all three junctions. The 24 hour objective of 7 exceedences of 50 µg/m<sup>3</sup> by 2010 is exceeded at Queen Street Roundabout, which predicts 10 exceedences for traffic travelling at 10 mph.

#### 8.4 Industrial Sources

Information provided by SEPA correspondence (Ref. 7) indicates that landfills, quarries and their associated industry will be the principal industrial contributors to  $PM_{10}$  within the Moray Council area. A list of SEPA regulated processes is provided in Appendix 6.

SEPA correspondence (Ref. 7) confirmed that monitoring undertaken by SEPA in the Moray Council area indicates that there is unlikely to be any exceedence of NAQS objectives for  $PM_{10}$  as a result of emissions from industrial processors. SEPA stated that monitoring is only conducted as point sources for various aspects of the quarrying processes and this will not necessarily correlate to overall  $PM_{10}$  emission from the quarry area itself. SEPA correspondence (Ref. 7) confirmed that there is currently "no significant non-compliance with any emission limit values" at any of the SEPA-regulated sites within the Moray locality.

#### 8.5 Solid Fuel Burning

Technical guidance LAQM.TG(03) (Ref. 4) states that local exceedences of  $PM_{10}$  objectives may occur in areas of concentrated coal burning. Concentrated areas are defined as those with more than 50 properties burning solid fuel in an area of 500m by 500m.

It is expected that only areas where a sufficient density of coal burning houses exist will be in areas of old council housing stock i.e. those built circa 1950 or pre-world war II. Modern housing is unlikely to be built with coal fires except in individual circumstances.

A survey undertaken by Moray Council Housing Service in 2002 suggests that there are no areas of concentrated solid fuel burning. The survey only included current Council housing stock at that time and did not include former council housing. It is assumed that former housing stock, roughly one third of total Council housing stock prior to private sales, have been converted to gas or electric heating by the owners.

The highest densities of coal burning properties found within Moray are presented in Table 24, and mapped in Figure 4 in Appendix 2.

| Area        | Number of Coal<br>Burning<br>Properties | Approximate<br>area (km²) | Number of<br>properties per<br>0.25 km <sup>2</sup> |  |  |
|-------------|-----------------------------------------|---------------------------|-----------------------------------------------------|--|--|
| Burghead    | 61                                      | 0.32 km <sup>2</sup>      | 48                                                  |  |  |
| Forres      | 82                                      | 3.46 km <sup>2</sup>      | 6                                                   |  |  |
| Lossiemouth | 85                                      | 1.74 km <sup>2</sup>      | 13                                                  |  |  |

#### Table 24 Density of Coal-burning properties within Moray

From the information available, the number of coal burning properties does not exceed 50 houses per 0.25 km<sup>2</sup>. However, Burghead does have a high coal burning property density of around 48 houses per 0.25 km<sup>2</sup>.

#### 8.6 Quarries and Dust Emitting Processes

Emissions from quarries and dust emitting processes are difficult to approximate, as they are fugitive and cannot be quantified without detailed information. An inventory of quarries and dust emitted processes predicted to be in operation in 2004 and 2010 was undertaken. A list of processes identified is included in Appendix 6.

Technical guidance LAQM.TG(03) (Ref.4) indicates that where receptors exist within a distance of between 200m and 1 km from the source a detailed assessment may be required where the background  $PM_{10}$  concentration for 2004 is greater than 27  $\mu$ g/m<sup>3</sup>. As the 2004 and 2010 background concentration for Moray was established to be below 18  $\mu$ g/m<sup>3</sup> there is no further need for consideration.

#### 8.7 Air Traffic

There are no airports exceeding the 10 million people per annum limit set out in the technical guidance LAQM.TG(03) (ref.4) situated within Moray therefore no assessment of

emissions from air traffic has been made. Moray Council has communicated that concerns have been raised by local residents in the form of a petition and complaints regarding atmospheric pollution from the two RAF airbases (Appendix 1. Correspondence). No emissions data for either RAF airfield is available for assessment. However Moray Council has gained approval from Committee to monitor aircraft odour and further monitoring of air quality with a view to determining the impact of aircraft emissions.

#### 8.8 Conclusion

Monitoring of  $PM_{10}$  undertaken at the Aberdeen national network monitoring site indicates that the NAQS objectives for  $PM_{10}$  are unlikely to be exceeded in urban locations. It is therefore concluded that ambient  $PM_{10}$  concentrations are unlikely to exceed NAQS objective levels.

It is considered unlikely that there will be any exceedence of NAQS objectives for  $PM_{10}$  as a result of emissions from domestic coal burning alone.

No industrial or domestic coal burning emissions sources were identified that are considered likely to cause a localised exceedence of the NAQS objective for  $PM_{10}$  in 2004, or 2010.

The NAQS annual mean objective for  $PM_{10}$  set by the Scottish Executive for 2010 is likely to be exceeded at a few locations, namely busy road junctions.

It is therefore considered likely that there will be exceedences of the NAQS objective for  $\text{PM}_{10}$  in 2010.

A Detailed Assessment for PM<sub>10</sub> is required for Moray Council.

#### 9 CONCLUSIONS

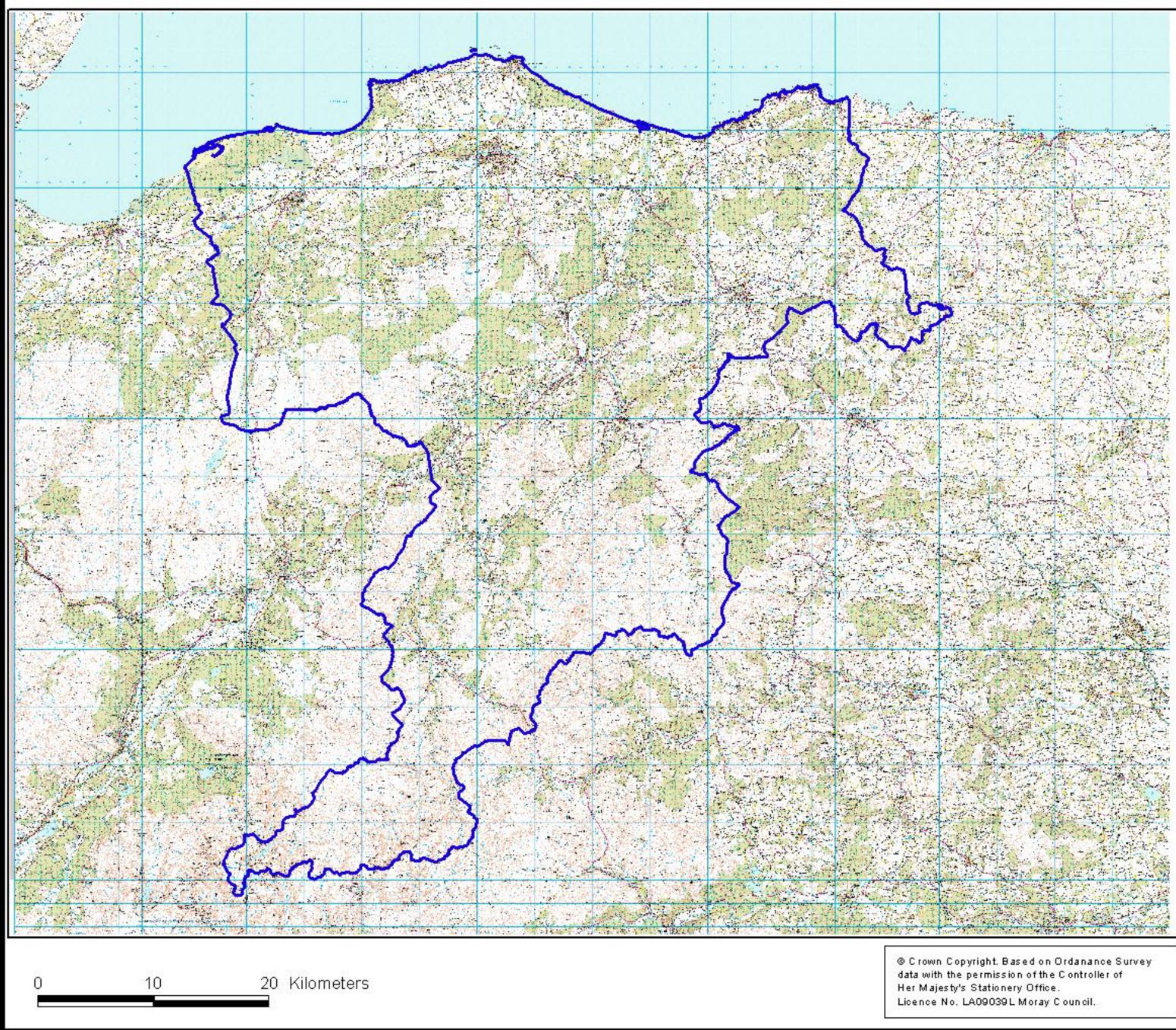
An assessment has been made of the seven pollutants contained within the National Air Quality Strategy and the ambient ground level concentrations of each pollutant assessed against the NAQS objectives for each pollutant. The conclusions of the assessment were as follows:

- The ambient CO concentration is unlikely to exceed the NAQS objective by the end of 2003. No pollutant hotspots from industrial or road traffic emissions sources were predicted. It is therefore concluded that there will be no exceedence of the NAQS objective for CO within Moray and it is deemed unnecessary to progress to a Detailed Assessment.
- The ambient benzene concentration is unlikely to exceed the NAQS objective by the end of 2003 or 2010. No pollutant hotspots from industrial, road traffic, fuel depots or petrol station emissions sources were predicted. It is therefore concluded that there will be no exceedence of the NAQS objective for benzene within Moray and it is deemed unnecessary to progress to a Detailed Assessment.
- The ambient 1,3-butadiene concentration is unlikely to exceed the NAQS objective by the end of 2003. No pollutant hotspots from industrial sources were predicted. It is therefore concluded that there will be no exceedence of the NAQS objective for 1,3-butadiene within Moray and it is deemed unnecessary to progress to a Detailed Assessment.
- The ambient lead concentration is unlikely to exceed the NAQS objective by the end of 2004 or 2008. No pollutant hotspots from industrial emissions sources were predicted. It is therefore concluded that there will be no exceedence of the NAQS objective for lead within Moray and it is deemed unnecessary to progress to a Detailed Assessment.
- The ambient NO<sub>2</sub> concentration is unlikely to exceed the NAQS objectives by the end of 2005. No pollutant hotspots from industrial, road traffic or any other emissions sources were predicted. It is therefore concluded that there will be no exceedence of the NAQS objectives for NO<sub>2</sub> within Moray and it is deemed unnecessary to progress to a Detailed Assessment.
- The ambient SO<sub>2</sub> concentration is unlikely to exceed the respective NAQS objectives by the end of 2004 and 2005. No pollutant hotspots from industrial or combustion processes were predicted. It is therefore concluded that there will be no exceedence

of the NAQS objectives for  $SO_2$  within Moray and it is deemed unnecessary to progress to a Detailed Assessment.

 The ambient PM<sub>10</sub> concentration is unlikely to exceed the NAQS objectives by the end of 2004. No pollutant hotspots from industrial sources were predicted to cause an exceedence of 2004 or 2010 objectives. The 2010 NAQS objectives are however predicted to be exceeded at some busy road junctions. In accordance with the Technical Guidance LAQM.TG(03) (Ref. 4) it is deemed necessary to progress to a Detailed Assessment for PM<sub>10</sub> at this stage.

A Detailed Assessment is therefore required for  $PM_{10}$  for the Moray Council area to be submitted to the Scottish Executive by the end of April 2004.


Moray Council will be required to continue its assessment of air quality for all other pollutants and to produce an annual progress report for the Scottish Executive by the end of April 2004.

#### 10 REFERENCES

| Ref. 1  | Air Quality Strategy for England, Scotland, Wales and Northern Ireland, January 2000          |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| Ref. 2  | Air Quality Regulations, 2000                                                                 |  |  |  |  |
| Ref. 3  | Air Quality (Scotland) Amendment Regulations 2002                                             |  |  |  |  |
| Ref. 4  | Local Air Quality Management, Technical Guidance LAQM.TG(03), February 2003                   |  |  |  |  |
| Ref.5   | Air Quality Review Study for Moray Council, Stage 1, June 1998, Cordah Report MOR.001         |  |  |  |  |
| Ref.6   | Background Concentration Maps, AEA Technology:<br>www.airquality.co.uk/archive/laqm/tools/php |  |  |  |  |
| Ref.7   | SEPA Personal Communication (correspondence)                                                  |  |  |  |  |
| Ref.8   | Supplementary Air Quality Report First Stage Review and Assessment, 2000                      |  |  |  |  |
| Ref.9   | Rothes Ambient Air Study, SEPA Field Chemistry, August 2002, +Report TI 020805B_M             |  |  |  |  |
| Ref.10  | Design Manual for Roads and Bridges, Volume 11, 2000                                          |  |  |  |  |
| Ref.11  | ENTEC Report / Scottish Executive, 2000                                                       |  |  |  |  |
| Ref. 12 | Local Air Quality Management, Technical Guidance LAQM.TG(00), 2000                            |  |  |  |  |

APPENDIX 1

Correspondence



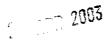

Moray Council Boundary

Figure 1. Moray Council Area

Project Number: MOR.005 Date: May 2003

Moray Council Air Quality Updating and Screening Assessment 2003







Our Ref: SS/SP/A.99 Env A Your Ref:

Please contact: Mrs Sheena Strachan

14 April 2003

Mr Stuart McGowan BMT CORDAH Ltd The Doherty Building Pentland Science Park Penicuik Edinburgh EH26 0PZ

Dear Stuart

#### LAQM UPDATING AND SCREENING 2003 SOURCES REGULATED BY SEPA

Further to your request for SEPA data relating to industrial sources of specified pollutants, I have collated lists of sources in the Moray Council area and forwarded them to you via email.

When interpreting the spreadsheets please note the following:

The "relevant LAQM pollutants" column refers to the substances advised in LAQM. TG(03) as being potentially significant from those industry sectors. Of course they may not be significant at each site and I have provided information as to whether SEPA holds relevant data or modelling relating to local releases.

The date of authorisation/permit has been included so that you can identify those new sources which have begun operating since the last round of review and assessment. In addition in the Moray Council area there has been a significant increase in the operating capacity of the animal waste incineration process at Douglasbrae Knackery, Keith. This results from the installation of two additional incinerators in 2001 and 2002 respectively.

Because of the nature of pollution control legislation, little numerical data is required by SEPA to carry out its regulatory functions in respect of Part B authorised processes. Much of the data which is collected relates to compliance demonstration of emission limit values based on intermittent monitoring of the concentration of substance released, to check for on-going efficiency of abatement equipment for instance. I have however listed the principle Process Guidance note for each process so that the emissions calculations in the LAQM technical guidance can be applied if necessary. There is currently no significant non-compliance with emission limit values at any of the SEPA-regulated sites locally.



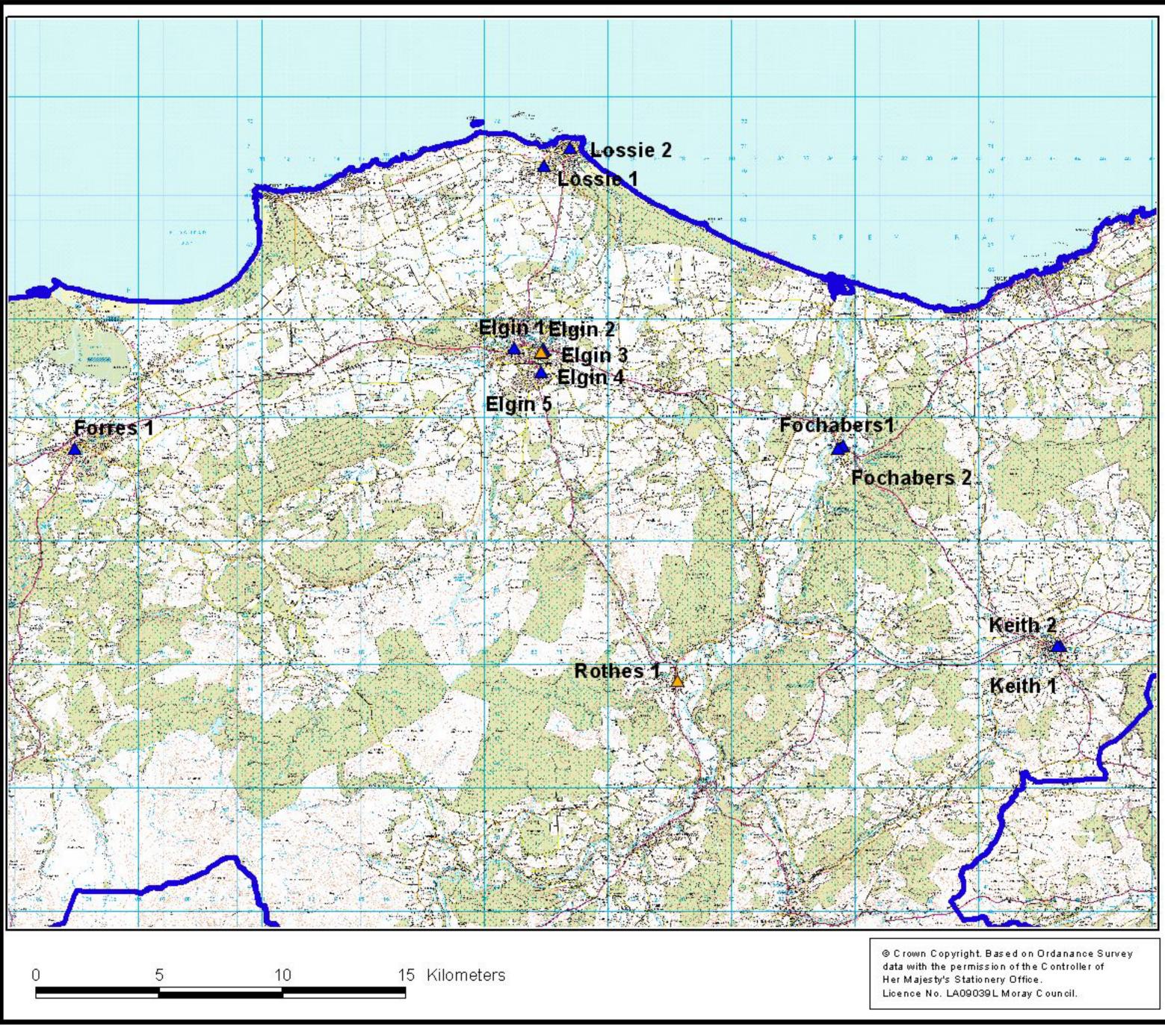
Dirigio all Office Graesser House, Pooderty Way Dirigiwall Business Park, Dirigiwall IV15 SXB tel 01349 862021 (fax 01349 863987) www.sepalorg.uk Mr Stuart McGowan

Please note that the only quarrying activities authorised by SEPA are the use of crushing and screening plant and roadstone coating operations. The removal and storage of overburden and the blasting of rock from the quarry face are not prescribed processes and control of fugitive emissions of dust from these processes is not included in Part B authorisations. SEPA does hold annual monitoring data from point sources such as bag filter systems on site but the measurements relate to total particulate and not specifically the PM10 fraction. This is also true of cement batching processes. There may however be other relevant information within the application and authorisation which would be of use to you in your assessment of the significance of the source, for example the type of fuel used in roadstone coating, conditions relating to control of dust from haul roads, the relative position of cement silos etc.

There are a significant number of service station operators holding Part B authorisations in the area as a result of the requirement to fit and use petrol vapour recovery systems for loading and unloading into and from storage tanks at such premises. None of these has Stage 2 controls in use at the pump. At the time of application for authorisation, SEPA acquired annual throughput information for the previous three years to ascertain into which size banding and associated application deadline each service station fitted. However it is not necessary for SEPA to keep this information on an on-going basis and many operators did not give specific information at the time. The Moray Council Petroleum Licensing Officer ought to have current information and indeed was helpful in providing it to SEPA previously. If there are any service stations for which you need additional information, in accordance with LAQM. TG(03), please contact me and I will check individual files to see whether the information is held.

The spreadsheet describes the waste type licensed for each landfill site regulated by SEPA. This will be the principle guide as to the likelihood of relevant fugitive dust emissions. Again specific data on PM10 release is not held by SEPA for landfill sites but if other information about any of these facilities is of interest to you in carrying out the updating and screening exercise please let me know.

If you feel that any of the industrial sources meet the LAQM. TG(03) criteria for relevant exposure and you therefore require more detailed information please contact me again, guoting the relevant operator name and authorisation/permit reference number.


I would welcome any comments you may have about the layout, content or practicality of the spreadsheets and therefore look forward to an on-going exchange of information during the updating and screening exercise.

Yours sincerely

S. Lat

SHEENA STRACHAN AIR QUALITY AND NOISE CO-ORDINATOR

cc: George Murray, The Moray Council





🛕 SO2 Diffusion Tubes A NO2 Diffusion Tubes 🔲 Moray Council Boundary

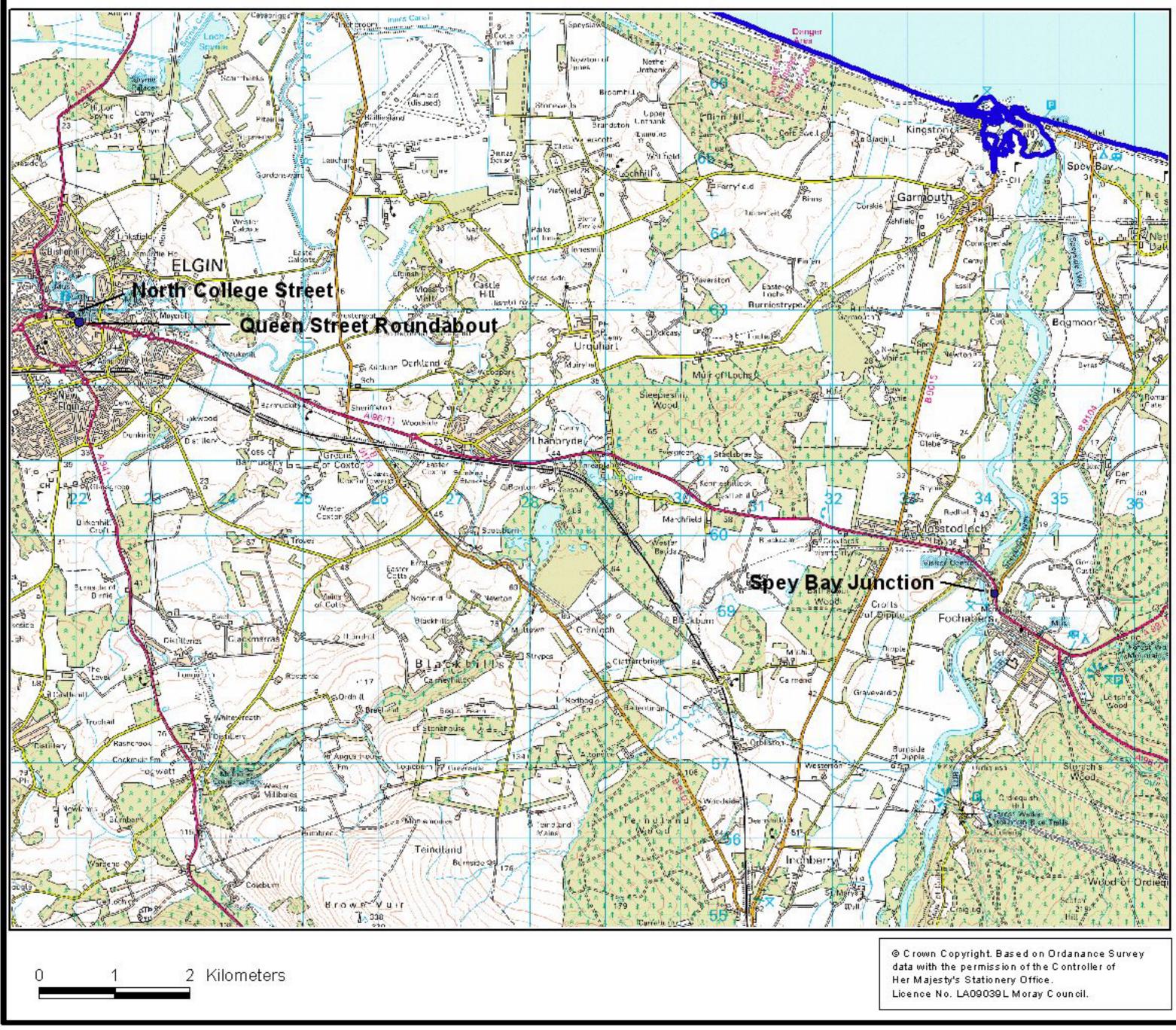

Elgin 1. Lamp Post, Elgin Elgin 2. Junction East, Elgin Elgin 3. 99 - 101 Main Street, Elgin Elgin 4. 26 - 28 Prioiry Place, Elgin Elgin 5. Main Street, New Elgin Fochabers 1. 50A High Street, Fochabers Fochabers 2. Sundach, Fochabers Forres 1. Tollbooth, Huntly Keith 1. 106 Moss Street, Keith Keith 2. 87 Moss Street, Keith Lossie 1. 1 Merryton Court, Lossiemouth Lossie 2. 27 James Street, Lossiemouth Rothes 1. Spey Drive, Rothes

Figure 2. Location of NO2 and SO2 Diffusion Tubes.

Project Number: MOR.005 Date: May 2003

Moray Council LAQM Updating and Screening Assessment 2003







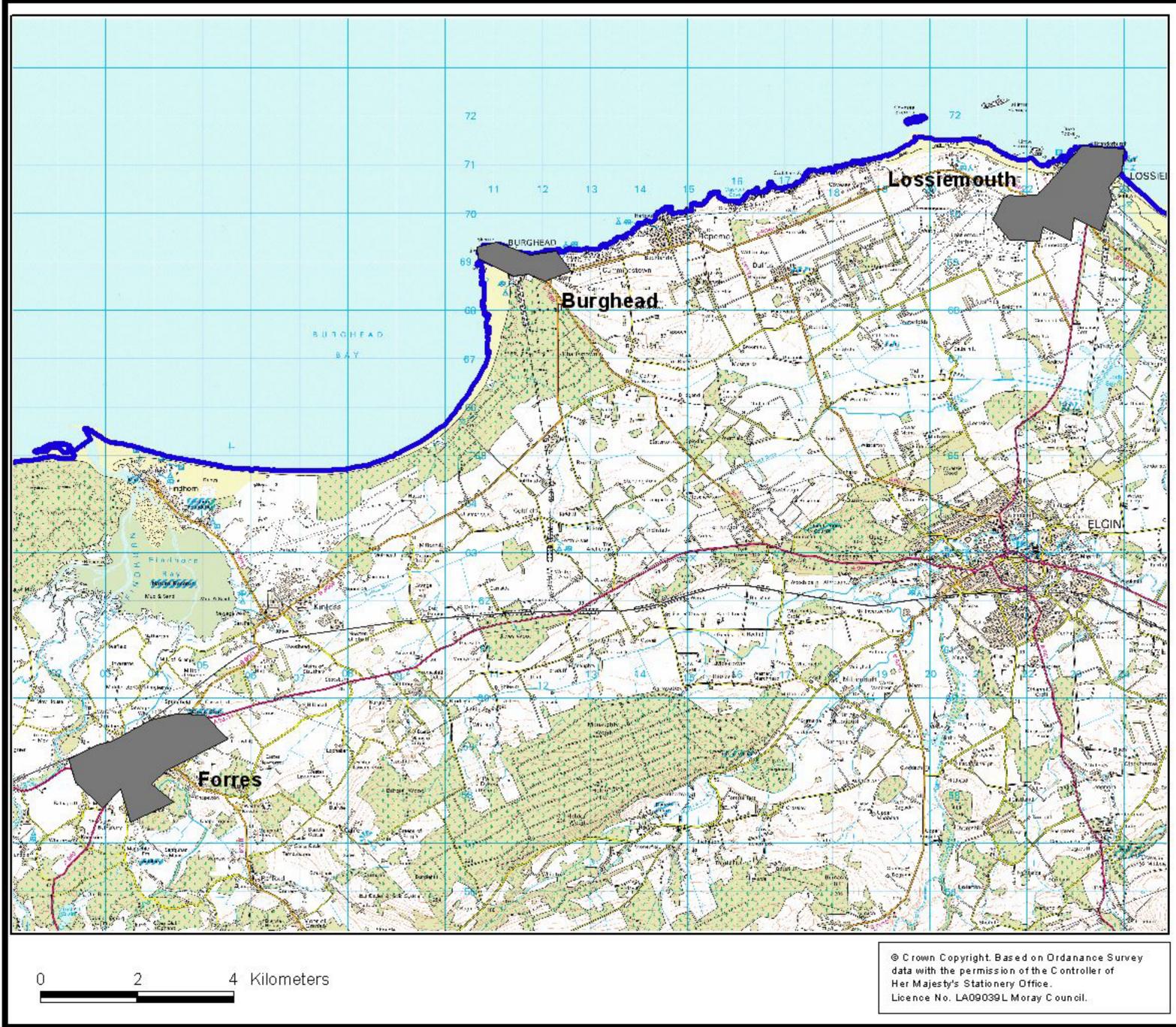

Roads II DMRB Assessment 🗖 Moray Collecti Boll da ry

Figure 3. Roads featured in the DMRB Assessment

Project Number: MOR.005 Date: May 2003

Moray Council Air Quality Updating and Screening Assessment 2003





Coal burning Areas

Figure 4. Location of High Density Coal Burning

Project Number: MOR.005 Date: May 2003

Moray Council Air Quality Updating and Screening Assessment 2003



APPENDIX 3

NETCEN Background Pollution Concentration Maps

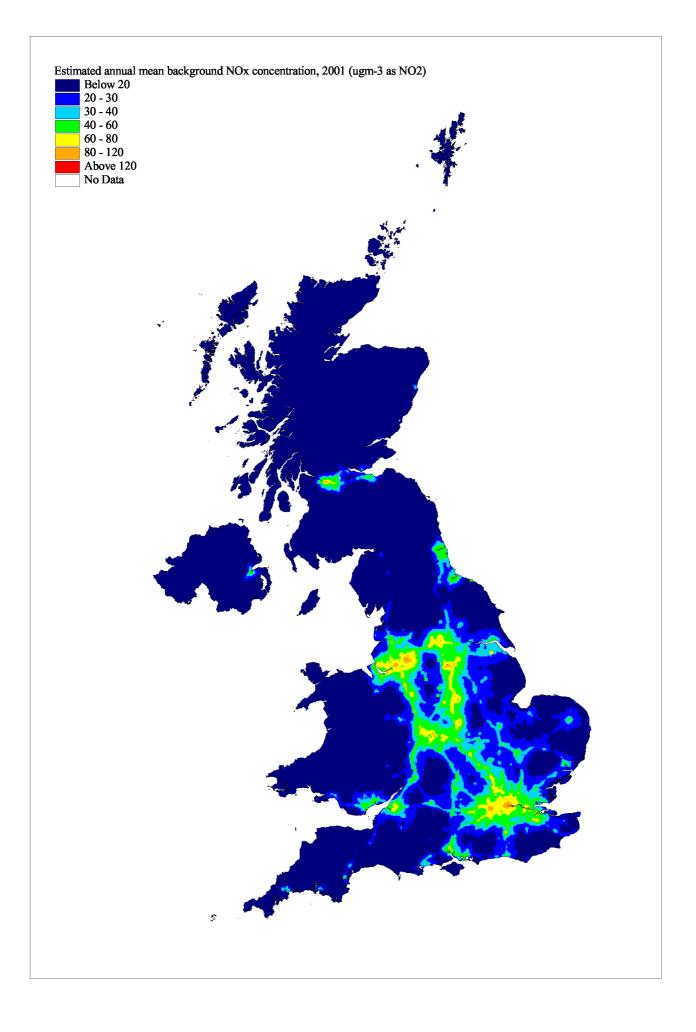
### Maps of Estimated Ambient Air Pollution in 2001 and Projections for Other Years

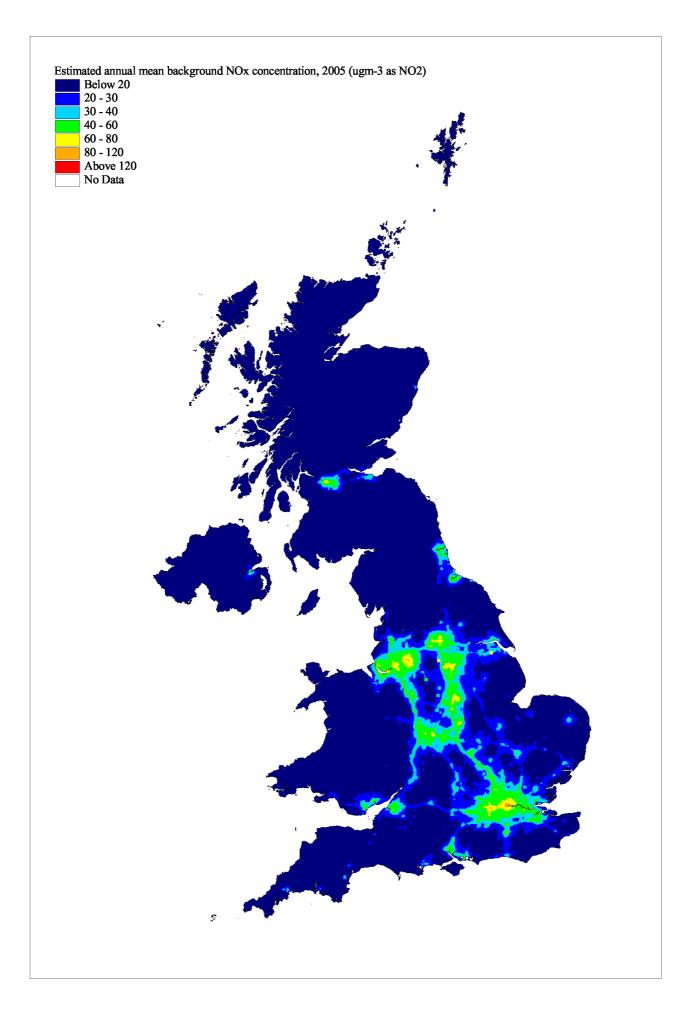
These maps are provided to assist local authorities in support of review and assessment of local air quality. These are the maps referred to in the Secretary of State's Technical Guidance TG(02).

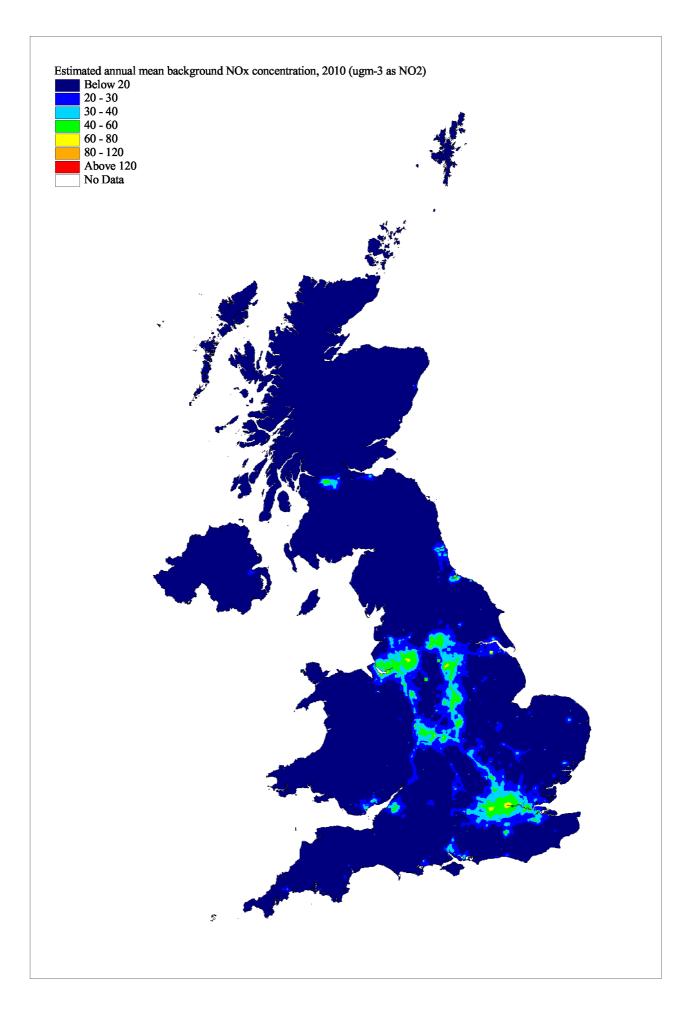
The following maps of estimated background annual mean air pollutant concentrations at a 1 km x 1 km grid resolution are available:

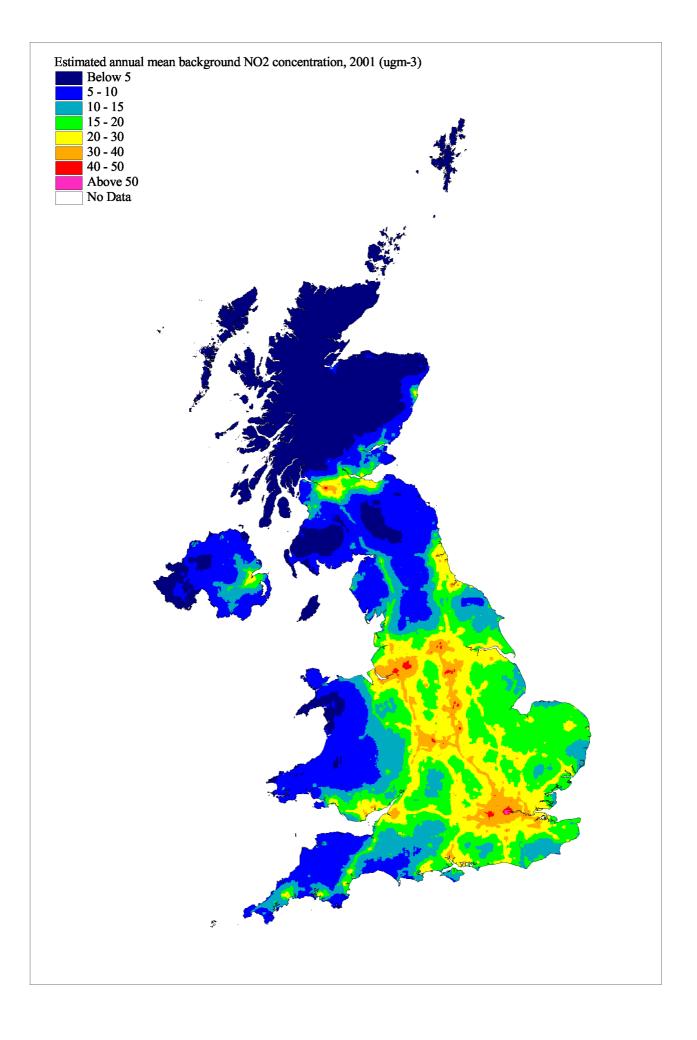
- NO<sub>x</sub> (2001, 2005, 2010)
- NO<sub>2</sub> (2001, 2005, 2010)
- PM<sub>10</sub> (2001, 2004, 2010)
- PM<sub>10</sub> secondary (2001)
- SO<sub>2</sub> (2001)
- Benzene (2001, 2003, 2010)
- CO (2001)
- 1,3-butadiene (2001, 2003)

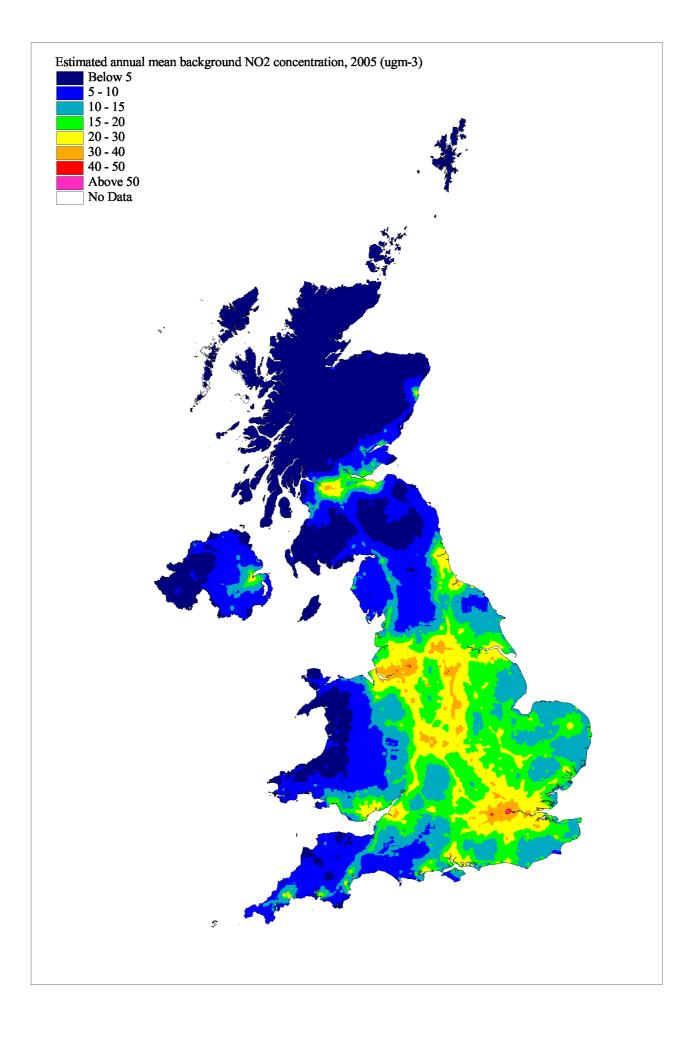
Methods to estimate concentrations in years other than 2001 are provided in TG(02).

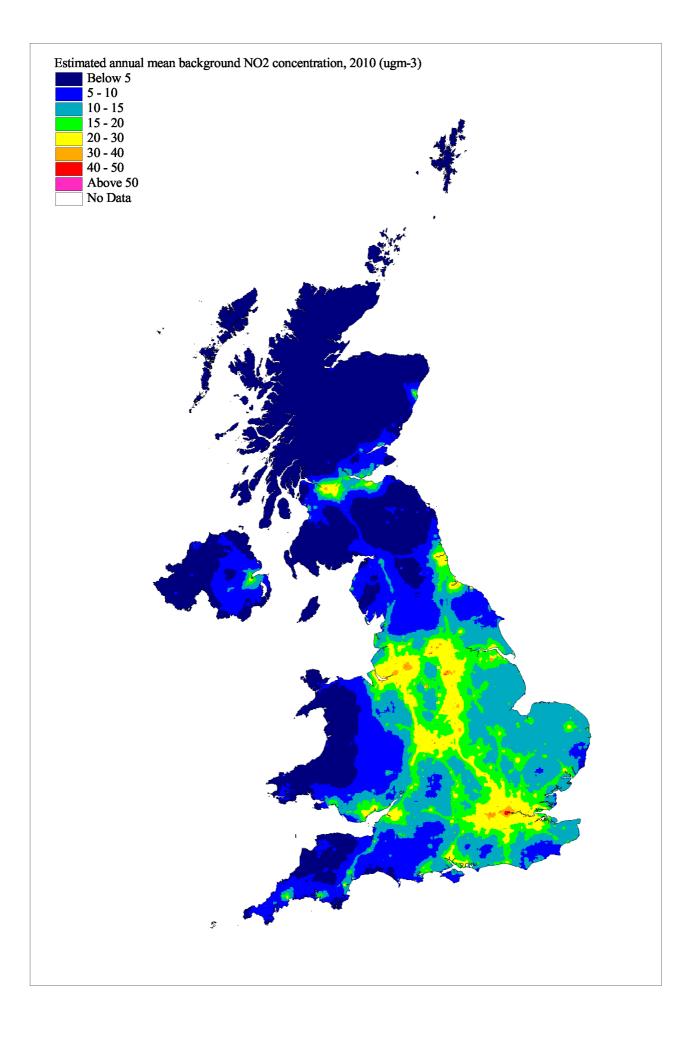

General information on the mapping methods is provided in the following reports:

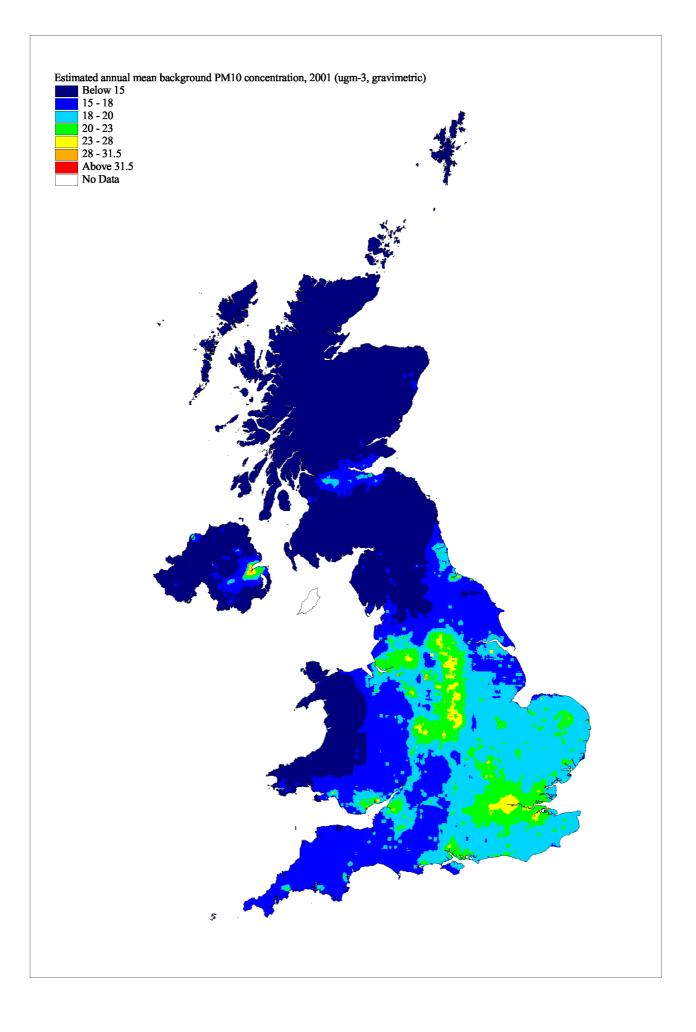

UK air quality modelling for annual reporting 2001 on ambient air quality assessment under Council Directives 96/62/EC and 1999/30/EC. AEA Technology, National Environmental Technology Centre. Report AEAT/ENV/R/1221

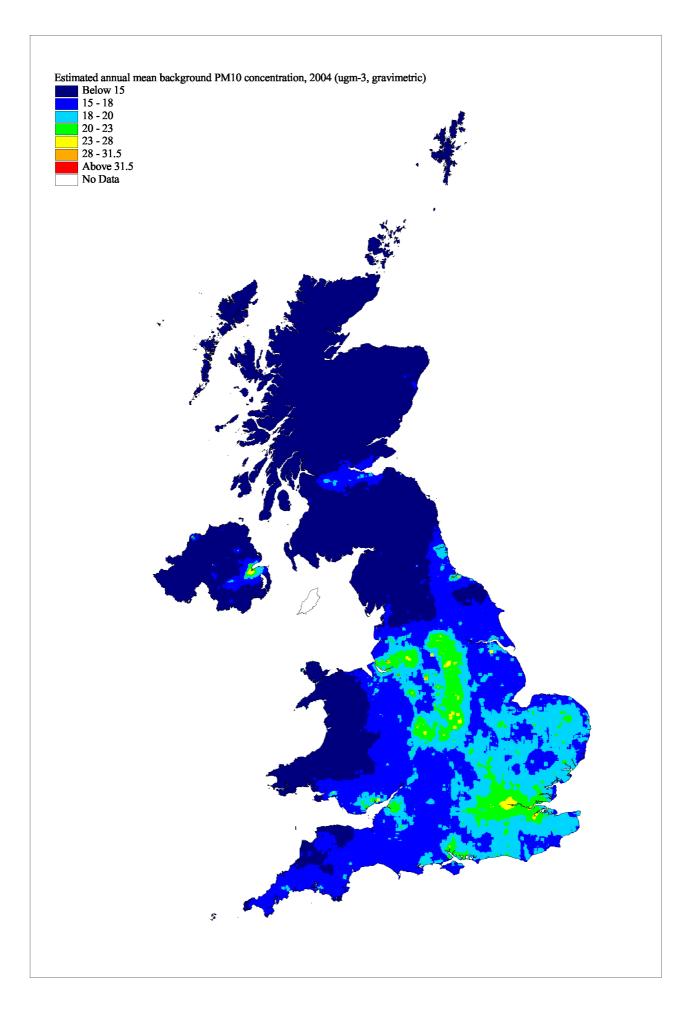

Stedman, J R, Bush, T J, Murrells, T P and King, K (2001). Baseline PM10 and NOx projections for PM10 objective analysis. AEA Technology, National Environmental Technology Centre. Report AEAT/ENV/R/0726.

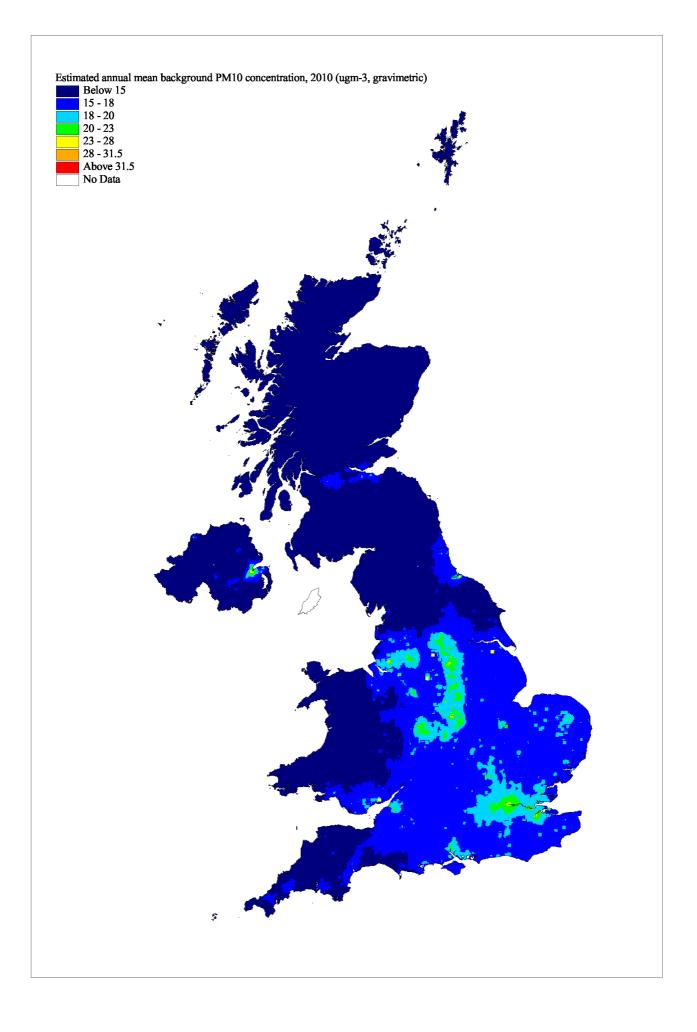

Bush T, Stedman J, Murrells T (2001) Projecting and mapping benzene concentrations in support of the Air Quality Strategy review. AEA Technology, National Environmental Technology Centre. Report AEAT/ENV/R/0722.

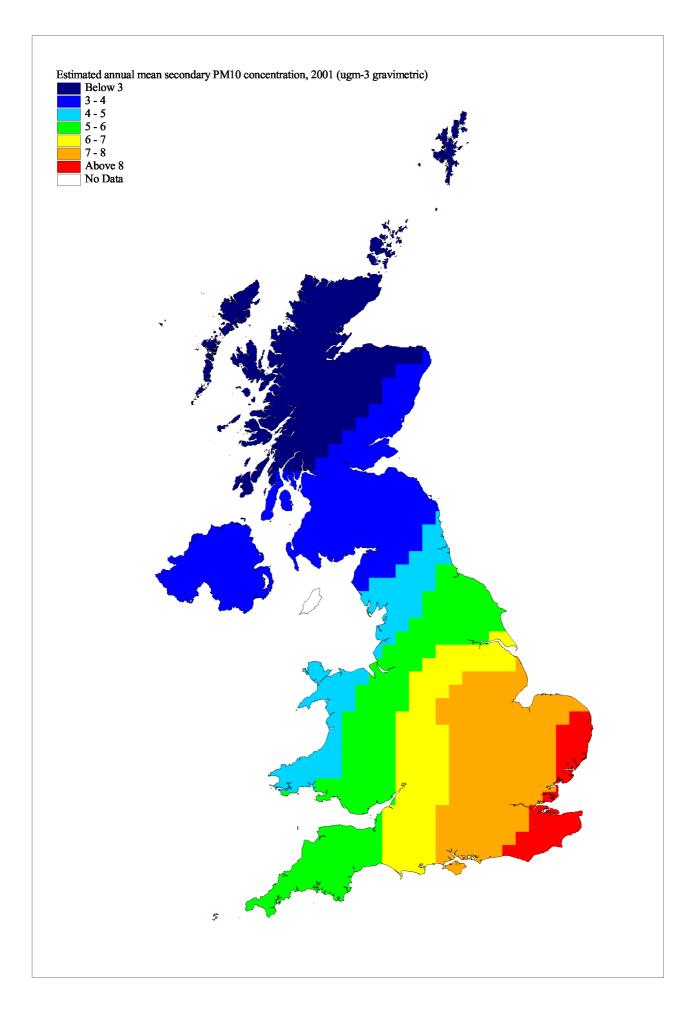

Bush T, Stedman J, Murrells T (2001) Projecting and mapping carbon monoxide concentrations in support of the Air Quality Strategy review. AEA Technology, National Environmental Technology Centre. Report AEAT/ENV/R/0723.

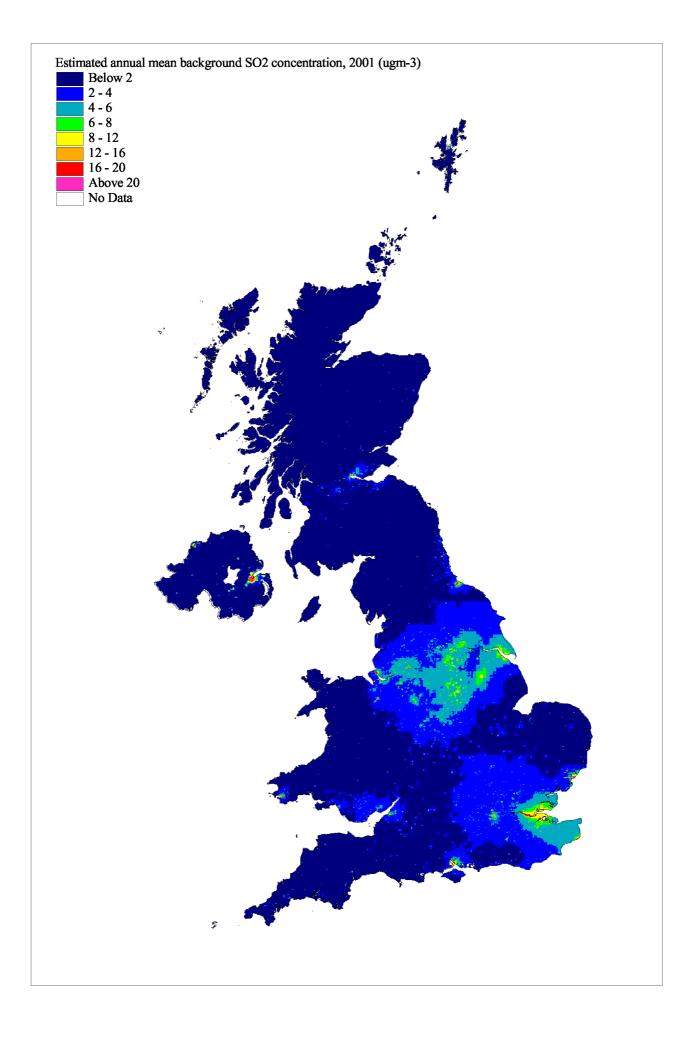


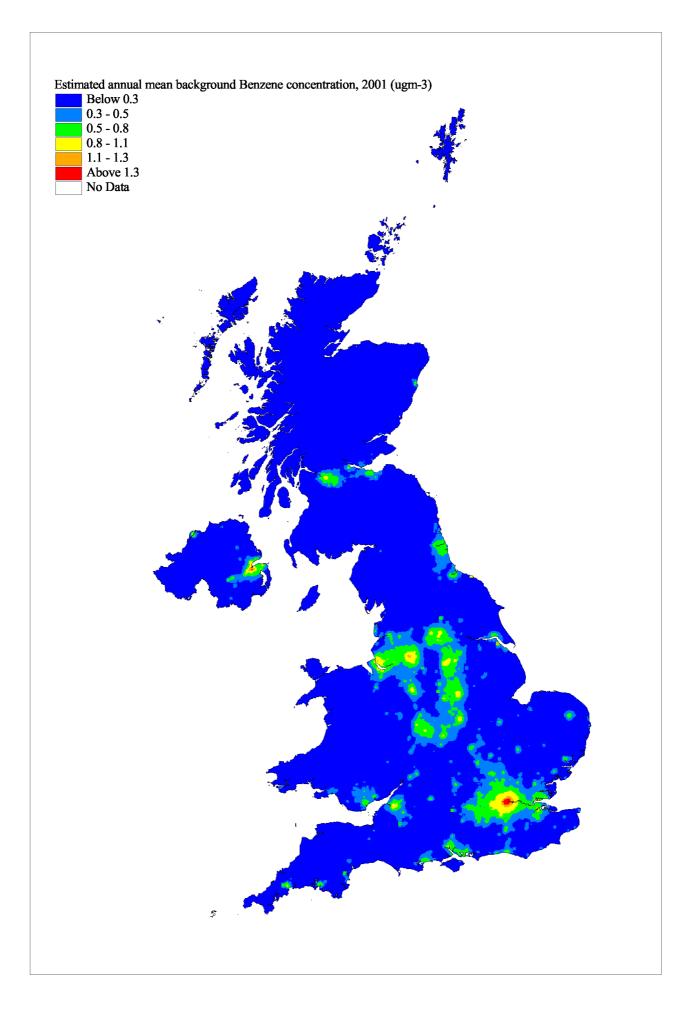



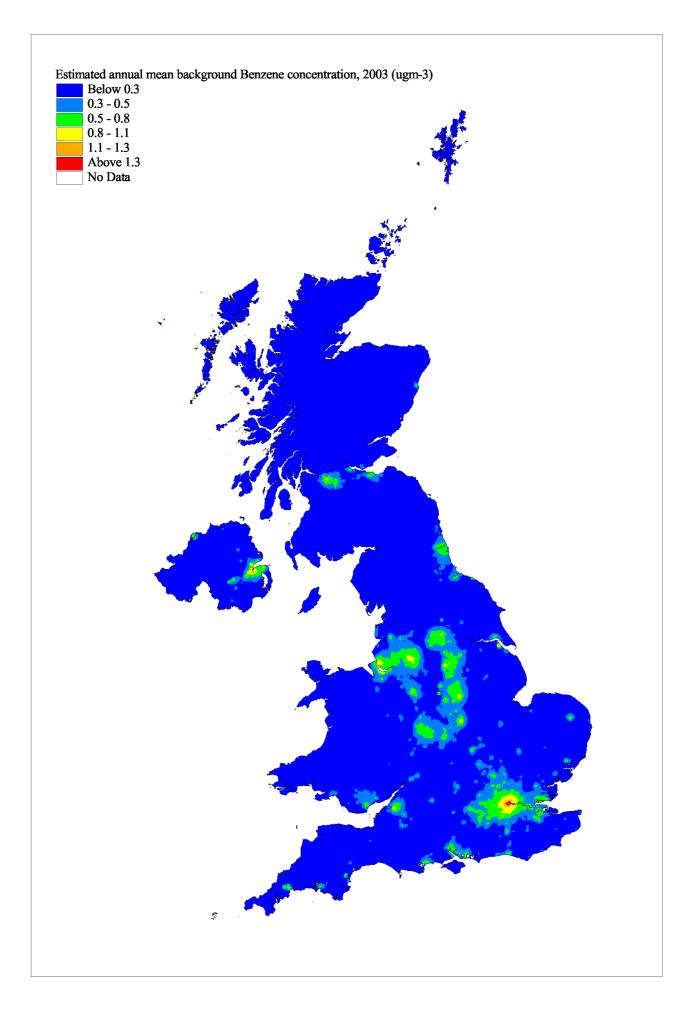



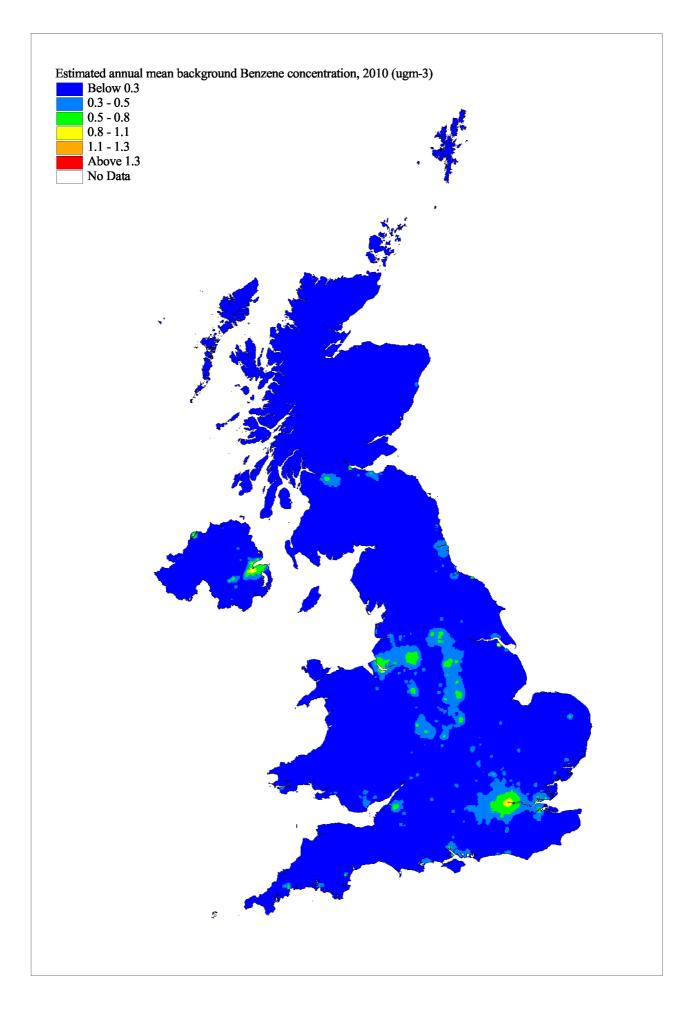



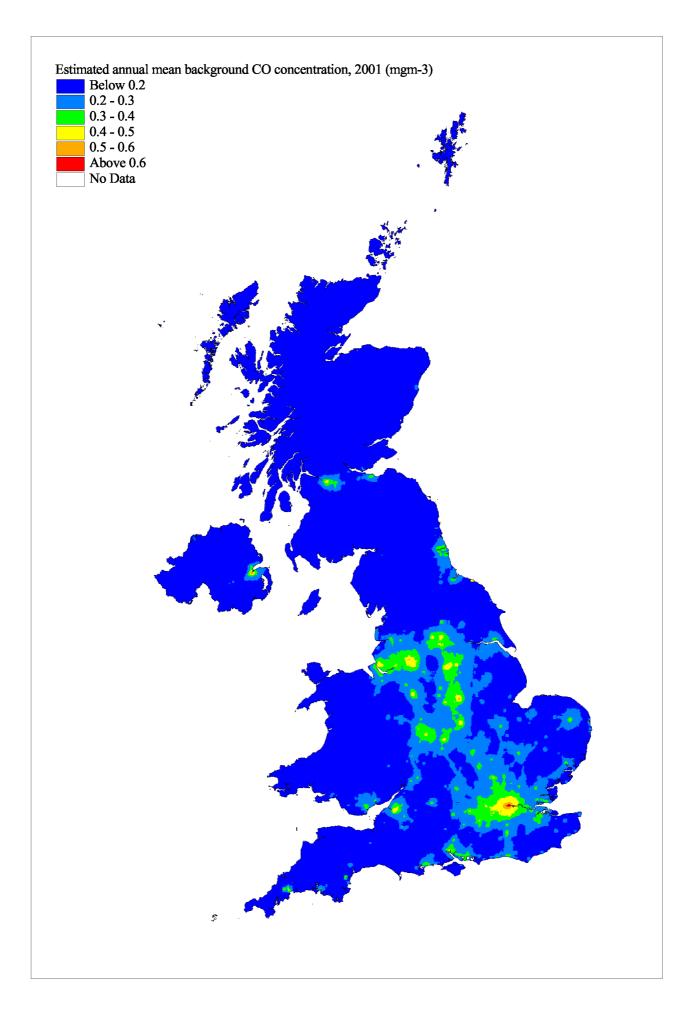



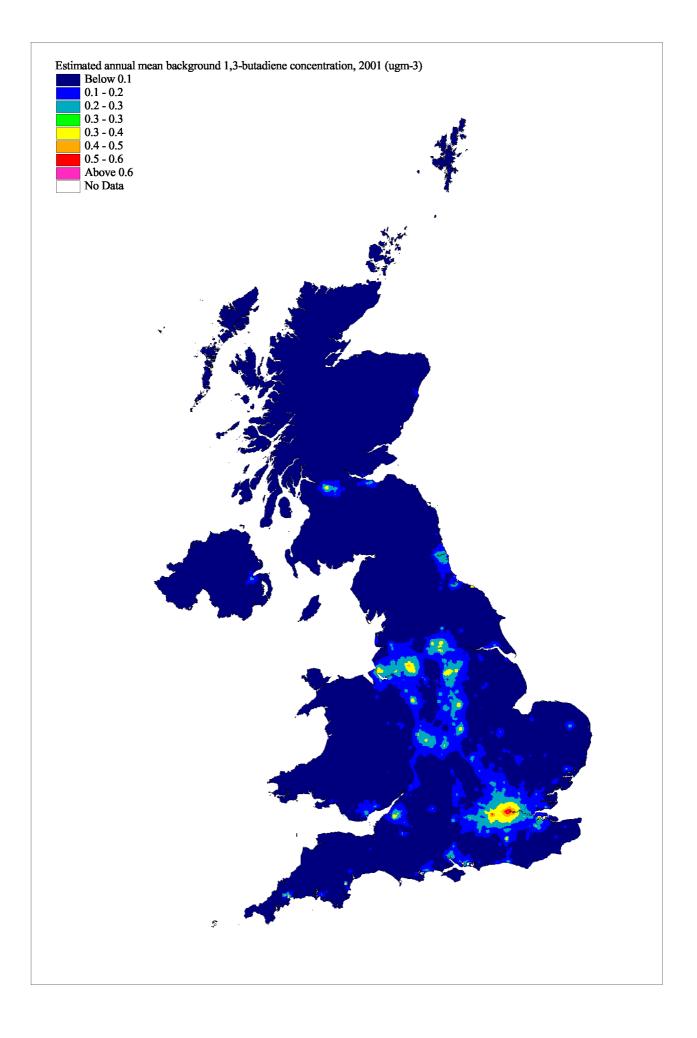



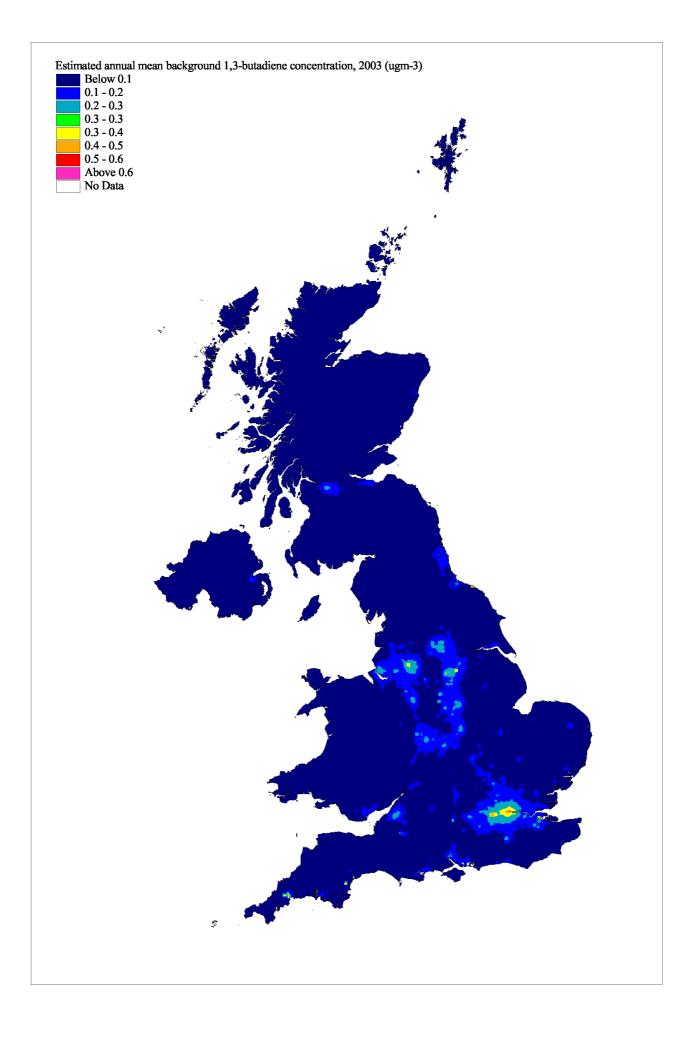














Appendix 4

Road Traffic Counts

|      |                                                    | AADT       |       | AADT |       |       |       |       |             |
|------|----------------------------------------------------|------------|-------|------|-------|-------|-------|-------|-------------|
| Road | Section Name                                       | Count Date | Total | HGV  | % HGV | 2004  | 2005  | 2010  | Speed Limit |
| A96  | JUNCTION B9104 SPEY BAY TO JUNCTION B9015 GARMOUTH | 01-Jan-98  | 6003  | 737  | 12    | 6963  | 7084  | 7564  | 60          |
| A96  | JUNCTION B9104 SPEY BAY TO JUNCTION B9015 GARMOUTH | 01-Jan-98  | 6003  | 737  | 12    | 6963  | 7084  | 7564  | 60          |
| A96  | QUEEN STREET ROUNDABOUT                            | 01-Jan-98  | 9187  | 703  | 8     | 10657 | 10841 | 11576 | 30          |
| A96  | QUEEN STREET ROUNDABOUT                            | 01-Jan-98  | 9187  | 703  | 8     | 10657 | 10841 | 11576 | 30          |
| A96  | WITH: QUEEN STREET ROUNDABOUT TO NORTH COLLEGE ST  | 01-Jan-98  | 8669  | 661  | 8     | 10056 | 10229 | 10923 | 30          |
| A96  | WITH: QUEEN STREET ROUNDABOUT TO NORTH COLLEGE ST  | 01-Jan-98  | 518   | 38   | 7     | 601   | 611   | 653   | 30          |
| A96  | JCT NORTH COLLEGE ST TO CUMMING ST RBT TAPER       | 01-Jan-98  | 9187  | 703  | 8     | 10657 | 10841 | 11576 | 30          |
| A96  | JCT NORTH COLLEGE ST TO CUMMING ST RBT TAPER       | 01-Jan-98  | 9187  | 703  | 8     | 10657 | 10841 | 11576 | 30          |

|     | n Section Co XSP | Count Date Traffic Moc Traffic Flov To | -   |     | -   |     |     |    | _ |    |    |     |    |      | 2004     | 2    |
|-----|------------------|----------------------------------------|-----|-----|-----|-----|-----|----|---|----|----|-----|----|------|----------|------|
| A96 | 12605/01 CL1     | 01-Jan-98 STANDAR PROPORT              | 751 | 418 | 333 | 83  | 272 | 63 | 0 | 61 | 48 | 163 | 61 | 6975 | 8091     | 82   |
| A96 | 12605/01 CR1     | 01-Jan-98 STANDAR PROPORT              | 751 | 418 | 333 | 83  | 272 | 63 | 0 | 61 | 48 | 163 | 61 | 6975 | 8091     | 82   |
| A96 | 12607/00 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/00 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/24 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/24 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 |    | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/38 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/38 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/44 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/44 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/75 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 |    | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12607/75 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 |    | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12609/05 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12609/05 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12609/10 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12609/10 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12609/90 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12609/90 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12612/05 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12612/05 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12612/35 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12612/35 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12612/43 CL1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12612/43 CR1     | 01-Jan-98 STANDAR PROPORT              | 737 | 429 | 308 | 85  | 291 | 53 | 0 | 23 | 42 | 197 | 46 | 6003 | 6963.48  | 708  |
| A96 | 12617/00 CL1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/00 CR1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/17 CL1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/17 CR1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/42 CL1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/42 CR1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/80 CL1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/80 CR1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/85 CL1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12617/85 CR1     | 01-Jan-98 STANDAR PROPORT              | 848 | 395 | 453 | 81  | 253 | 61 | 0 | 57 | 85 | 311 | 0  | 7609 | 8826.44  | 897  |
| A96 | 12619/00 CL1     | 01-Jan-98 STANDAR PROPORT              | 703 | 464 | 239 | 163 | 258 | 43 | 0 | 27 | 37 | 115 | 60 | 9187 | 10656.92 | 1084 |
| A96 | 12619/00 CR1     | 01-Jan-98 STANDAR PROPORT              | 703 | 464 | 239 | 163 | 258 | 43 | 0 | 27 | 37 | 115 | 60 | 9187 | 10656.92 | 1084 |
| A96 | 12619/15 CL1     | 01-Jan-98 STANDAR PROPORT              | 661 | 436 | 225 | 153 | 243 | 40 | 0 | 25 | 35 | 108 | 57 | 8669 | 10056.04 | 1022 |
| A96 | 12619/15 CL2     | 01-Jan-98 STANDAR PROPORT              | 38  | 26  | 12  | 9   | 15  | 2  | 0 | 1  | 2  | 6   | 3  | 518  | 600.88   | 61   |
| A96 | 12619/15 CR1     | 01-Jan-98 STANDAR PROPORT              | 661 | 436 | 225 | 153 | 243 | 40 | 0 | 25 | 35 | 108 | 57 | 0    | 0        |      |
| A96 | 12619/24 CL1     | 01-Jan-98 STANDAR PROPORT              | 661 | 436 | 225 | 153 | 243 | 40 | 0 | 25 | 35 | 108 | 57 | 8669 | 10056.04 | 1022 |
| A96 | 12619/24 CL2     | 01-Jan-98 STANDAR PROPORT              | 38  | 26  | 12  | 9   | 15  | 2  | 0 | 1  | 2  | 6   | 3  | 518  | 600.88   | 61   |
| A96 | 12619/34 CL1     | 01-Jan-98 STANDAR PROPORT              | 703 | 464 | 239 | 163 | 258 | 43 | 0 | 27 | 37 | 115 | 60 | 9187 | 10656.92 | 1084 |
| A96 | 12619/34 CR1     | 01-Jan-98 STANDAR PROPORT              | 703 | 464 | 239 | 163 | 258 | 43 | 0 | 27 | 37 | 115 | 60 | 9187 | 10656.92 | 1084 |
| A96 | 12619/76 CL1     | 01-Jan-98 STANDAR PROPORT              | 661 | 436 | 225 | 153 | 243 | 40 | 0 | 25 | 35 | 108 | 57 | 8669 | 10056.04 | 1022 |
| A96 | 12619/76 CL2     | 01-Jan-98 STANDAR PROPORT              | 38  | 26  | 12  | 9   | 15  | 2  | 0 | 1  | 2  | 6   | 3  | 518  | 600.88   | 61   |
| A96 | 12619/88 CL1     | 01-Jan-98 STANDAR PROPORT              | 661 | 436 | 225 | 153 | 243 | 40 | 0 | 25 | 35 | 108 | 57 | 8669 | 10056.04 | 1022 |
| A96 | 12619/88 CL2     | 01-Jan-98 STANDAR PROPORT              | 38  | 26  | 12  | 9   | 15  | 2  | 0 | 1  | 2  | 6   | 3  | 518  | 600.88   | 61   |
| A96 | 12621/00 CL1     | 01-Jan-98 STANDAR PROPORT              | 649 | 406 | 243 | 100 | 272 | 34 | 0 | 50 | 38 | 119 | 36 | 6780 | 7864.8   | 80   |
| A96 | 12621/00 CR1     | 01-Jan-98 STANDAR PROPORT              | 649 | 406 | 243 | 100 | 272 | 34 | 0 | 50 | 38 | 119 | 36 | 6780 | 7864.8   | 80   |
| A96 | 12621/15 CL1     | 01-Jan-98 STANDAR PROPORT              | 612 | 384 | 228 | 95  | 257 | 32 | 0 | 47 | 35 | 112 | 34 | 6411 | 7436.76  | 756  |
| A96 | 12621/15 CL2     | 01-Jan-98 STANDAR PROPORT              | 35  | 22  | 13  | 5   | 15  | 2  | 0 | 3  | 2  | 6   | 2  | 368  | 426.88   | 43   |
| A96 | 12621/30 CL1     | 01-Jan-98 STANDAR PROPORT              | 612 | 384 | 228 | 95  | 257 | 32 | 0 | 47 | 35 | 112 | 34 | 6411 | 7436.76  | 756  |
| A96 | 12621/30 CL2     | 01-Jan-98 STANDAR PROPORT              | 35  | 22  | 13  | 5   | 15  | 2  | 0 | 3  | 2  | 6   | 2  | 368  | 426.88   | 43   |
| A96 | 12621/45 CL1     | 01-Jan-98 STANDAR PROPORT              | 649 | 406 | 243 | 100 | 272 | 34 | 0 |    |    | 119 | 36 |      | 7864.8   | 80   |
|     |                  |                                        | 0.0 |     | 2.0 |     |     | 01 | 0 | 00 | 00 |     | 00 | 0,00 |          | 00   |

| 6 Aadf | Total Aadf | 2004     | 2005     | 2010     | Pedal Cycl |
|--------|------------|----------|----------|----------|------------|
| 61     | 6975       | 8091     | 8230.5   | 8788.5   | 0          |
| 61     | 6975       | 8091     | 8230.5   | 8788.5   | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 46     | 6003       | 6963.48  | 7083.54  | 7563.78  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 0      | 7609       | 8826.44  | 8978.62  | 9587.34  | 0          |
| 60     | 9187       | 10656.92 | 10840.66 | 11575.62 | 0          |
| 60     | 9187       | 10656.92 | 10840.66 | 11575.62 | 0          |
| 57     | 8669       | 10056.04 | 10229.42 | 10922.94 | 0          |
| 3      | 518        | 600.88   | 611.24   | 652.68   | 0          |
| 57     | 0          | 0        | 0        | 0        | 0          |
| 57     | 8669       | 10056.04 | 10229.42 | 10922.94 | 0          |
| 3      | 518        | 600.88   | 611.24   | 652.68   | 0          |
| 60     | 9187       | 10656.92 | 10840.66 | 11575.62 | 0          |
| 60     | 9187       | 10656.92 | 10840.66 | 11575.62 | 0          |
| 57     | 8669       | 10056.04 | 10229.42 | 10922.94 | 0          |
| 3      | 518        | 600.88   | 611.24   | 652.68   | 0          |
| 57     | 8669       | 10056.04 | 10229.42 | 10922.94 | 0          |
| 3      | 518        | 600.88   | 611.24   | 652.68   | 0          |
| 36     | 6780       | 7864.8   | 8000.4   | 8542.8   | 0          |
| 36     | 6780       | 7864.8   | 8000.4   | 8542.8   | 0          |
| 34     | 6411       | 7436.76  | 7564.98  | 8077.86  | 0          |
| 2      | 368        | 426.88   | 434.24   | 463.68   | 0          |
| 34     | 6411       | 7436.76  | 7564.98  | 8077.86  | 0          |
| 2      | 368        | 426.88   | 434.24   | 463.68   | 0          |
| 36     | 6780       | 7864.8   | 8000.4   | 8542.8   | 0          |
|        |            |          |          |          |            |

| A96        | 12621/45 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
|------------|------------------------------|--------------------------------------------------------|------------|------------|------------|----------|------------|----------|--------|----------|----------|------------|----------|--------------|
| A96        | 12623/00 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/00 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/10 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/10 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/35 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/35 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/50 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12623/50 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 649        | 406        | 243        | 100      | 272        | 34       | 0      | 50       | 38       | 119        | 36       | 6780         |
| A96        | 12625/00 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/00 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/23 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/23 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/35 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/35 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/37 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 540        | 301        | 239        | 34       | 238        | 29       | 0      | 29       | 36       | 131        | 43       | 4186         |
| A96        | 12625/37 CL2                 | 01-Jan-98 STANDAR PROPORT                              | 30         | 17         | 13         | 2        | 13         | 2        | 0      | 2        | 2        | 7          | 2        | 227          |
| A96        | 12625/37 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/42 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/42 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570<br>570 | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/46 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413         |
| A96        | 12625/46 CR1<br>12625/50 CL1 | 01-Jan-98 STANDAR PROPORT<br>01-Jan-98 STANDAR PROPORT | 570<br>570 | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 4413<br>4413 |
| A96        | 12625/50 CL1<br>12625/50 CR1 | 01-Jan-98 STANDAR PROPORT                              | 570<br>570 | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45<br>45 |              |
| A96<br>A96 | 12625/50 CR1<br>12625/77 CL1 | 01-Jan-98 STANDAR PROPORT                              | 570<br>570 | 318<br>318 | 252<br>252 | 36<br>36 | 251<br>251 | 31<br>31 | 0<br>0 | 31<br>31 | 38       | 138<br>138 | 45<br>45 | 4413<br>0    |
| A96<br>A96 | 12625/77 CC1<br>12625/77 CR1 | 01-Jan-98 STANDAR PROPORT                              | 570<br>570 | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38<br>38 | 138        | 45<br>45 | 0            |
| A96<br>A96 | 12625/88 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570<br>570 | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45<br>45 | 0            |
| A90<br>A96 | 12625/88 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45       | 0            |
| A90<br>A96 | 12625/92 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45<br>45 | 0            |
| A90<br>A96 | 12625/92 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 570        | 318        | 252        | 36       | 251        | 31       | 0      | 31       | 38       | 138        | 45<br>45 | 0            |
| A96        | 12632/05 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/05 CL2                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | -004<br>0    |
| A96        | 12632/05 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/20 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/20 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/40 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 531        | 245        | 286        | 6        | 216        | 23       | 0      | 41       | 65       | 140        | 40       | 4359         |
| A96        | 12632/40 CL2                 | 01-Jan-98 STANDAR PROPORT                              | 29         | 13         | 16         | 0        | 12         | 1        | 0      | 2        | 4        | 8          | 2        | 235          |
| A96        | 12632/40 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 531        | 245        | 286        | 6        | 216        | 23       | 0      | 41       | 65       | 140        | 40       | 0            |
| A96        | 12632/50 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 531        | 245        | 286        | 6        | 216        | 23       | 0      | 41       | 65       | 140        | 40       | 4359         |
| A96        | 12632/50 CL2                 | 01-Jan-98 STANDAR PROPORT                              | 29         | 13         | 16         | 0        | 12         | 1        | 0      | 2        | 4        | 8          | 2        | 235          |
| A96        | 12632/60 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/60 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/90 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12632/90 CL2                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 0            |
| A96        | 12632/90 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 562        | 259        | 303        | 7        | 228        | 24       | 0      | 43       | 69       | 148        | 43       | 4594         |
| A96        | 12640/05 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/05 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/25 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/25 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/58 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/58 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/80 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 478        | 254        | 224        | 37       | 205        | 12       | 0      | 20       | 32       | 126        | 46       | 4500         |
| A96        | 12640/80 CL2                 | 01-Jan-98 STANDAR PROPORT                              | 25         | 14         | 11         | 2        | 11         | 1        | 0      | 1        | 2        | 6          | 2        | 231          |
| A96        | 12640/80 CR1                 | 01-Jan-98 STANDAR PROPORT                              | 504        | 268        | 236        | 39       | 216        | 13       | 0      | 21       | 34       | 132        | 49       | 4731         |
| A96        | 12640/95 CL1                 | 01-Jan-98 STANDAR PROPORT                              | 478        | 254        | 224        | 37       | 205        | 12       | 0      | 20       | 32       | 126        | 46       | 4500         |
|            |                              |                                                        |            |            |            |          |            |          |        |          |          |            |          |              |

| 7864.8  | 8000.4  | 8542.8  | 0 |
|---------|---------|---------|---|
| 7864.8  | 8000.4  |         | 0 |
|         |         | 8542.8  |   |
| 7864.8  | 8000.4  | 8542.8  | 0 |
| 7864.8  | 8000.4  | 8542.8  | 0 |
| 7864.8  | 8000.4  | 8542.8  | 0 |
| 7864.8  | 8000.4  | 8542.8  | 0 |
|         |         |         |   |
| 7864.8  | 8000.4  | 8542.8  | 0 |
| 7864.8  | 8000.4  | 8542.8  | 0 |
| 7864.8  | 8000.4  | 8542.8  | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
|         |         |         |   |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
|         |         |         |   |
| 4855.76 | 4939.48 | 5274.36 | 0 |
| 263.32  | 267.86  | 286.02  | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
|         |         |         |   |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 5119.08 | 5207.34 | 5560.38 | 0 |
| 0       | 0       | 0       | 0 |
| 0       | 0       | 0       | 0 |
|         |         |         |   |
| 0       | 0       | 0       | 0 |
| 0       | 0       | 0       | 0 |
| 0       | 0       | 0       | 0 |
| 0       | 0       | 0       | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
| 0       | 0       | 0       | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
|         |         |         |   |
| 5329.04 | 5420.92 | 5788.44 | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
| 5056.44 | 5143.62 | 5492.34 | 0 |
| 272.6   | 277.3   | 296.1   | 0 |
| 0       | 0       | 0       | 0 |
| 5056.44 | 5143.62 | 5492.34 | 0 |
|         |         |         |   |
| 272.6   | 277.3   | 296.1   | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
| 0       | 0       | 0       | 0 |
| 5329.04 | 5420.92 | 5788.44 | 0 |
|         |         |         |   |
| 5487.96 | 5582.58 | 5961.06 | 0 |
| 5487.96 | 5582.58 | 5961.06 | 0 |
| 5487.96 | 5582.58 | 5961.06 | 0 |
| 5487.96 | 5582.58 | 5961.06 | 0 |
| 5487.96 | 5582.58 | 5961.06 | 0 |
| 5487.96 | 5582.58 | 5961.06 | 0 |
|         |         |         |   |
| 5220    | 5310    | 5670    | 0 |
| 267.96  | 272.58  | 291.06  | 0 |
| E107 06 | 212.00  |         |   |
| 5487.96 | 5582.58 | 5961.06 | 0 |
| 5467.90 |         |         |   |

| A96 | 12640/95 CL2 | 01-Jan-98 STANDAR PROPORT | 25   | 14   | 11  | 2   | 11  | 1  | 0 | 1  | 2   | 6   | 2   | 231   | 267.96   | 272.58     |
|-----|--------------|---------------------------|------|------|-----|-----|-----|----|---|----|-----|-----|-----|-------|----------|------------|
| A96 | 12640/95 CR1 | 01-Jan-98 STANDAR PROPORT | 504  | 268  | 236 | 39  | 216 | 13 | 0 | 21 | 34  | 132 | 49  | 4731  | 5487.96  | 5582.58    |
| A96 | 12668/07 CL1 | 01-Jan-98 STANDAR PROPORT | 532  | 269  | 263 | 30  | 217 | 22 | 0 | 27 | 54  | 135 | 47  | 4248  | 4927.68  | 5012.64    |
| A96 | 12668/07 CR1 | 01-Jan-98 STANDAR PROPORT | 532  | 269  | 263 | 30  | 217 | 22 | 0 | 27 | 54  | 135 | 47  | 4248  | 4927.68  | 5012.64    |
| A96 | 12668/63 CL1 | 01-Jan-98 STANDAR PROPORT | 532  | 269  | 263 | 30  | 217 | 22 | 0 | 27 | 54  | 135 | 47  | 4248  | 4927.68  | 5012.64    |
| A96 | 12668/63 CR1 | 01-Jan-98 STANDAR PROPORT | 532  | 269  | 263 | 30  | 217 | 22 | 0 | 27 | 54  | 135 | 47  | 4248  | 4927.68  | 5012.64    |
| A96 | 12670/07 CL1 | 01-Jan-98 STANDAR PROPORT | 536  | 256  | 280 | 47  | 190 | 19 | 0 | 23 | 44  | 161 | 52  | 4685  | 5434.6   | 5528.3     |
| A96 | 12670/07 CR1 | 01-Jan-98 STANDAR PROPORT | 536  | 256  | 280 | 47  | 190 | 19 | 0 | 23 | 44  | 161 | 52  | 4685  | 5434.6   | 5528.3     |
| A96 | 12672/05 CL1 | 01-Jan-98 STANDAR PROPORT | 518  | 283  | 235 | 35  | 214 | 34 | 0 | 23 | 28  | 130 | 54  | 4966  | 5760.56  | 5859.88    |
| A96 | 12672/05 CR1 | 01-Jan-98 STANDAR PROPORT | 518  | 283  | 235 | 35  | 214 | 34 | 0 | 23 | 28  | 130 | 54  | 4966  | 5760.56  | 5859.88    |
| A96 | 12672/99 CL1 | 01-Jan-98 STANDAR PROPORT | 518  | 283  | 235 | 35  | 214 | 34 | 0 | 23 | 28  | 130 | 54  | 4966  | 5760.56  | 5859.88    |
| A96 | 12672/99 CR1 | 01-Jan-98 STANDAR PROPORT | 518  | 283  | 235 | 35  | 214 | 34 | 0 | 23 | 28  | 130 | 54  | 4966  | 5760.56  | 5859.88    |
| A96 | 12673/05 CL1 | 01-Jan-98 STANDAR PROPORT | 518  | 283  | 235 | 35  | 214 | 34 | 0 | 23 | 28  | 130 | 54  | 4966  | 5760.56  | 5859.88    |
| A96 | 12673/05 CR1 | 01-Jan-98 STANDAR PROPORT | 518  | 283  | 235 | 35  | 214 | 34 | 0 | 23 | 28  | 130 | 54  | 4966  | 5760.56  | 5859.88    |
| A96 | 12675/05 CL1 | 01-Jan-98 STANDAR PROPORT | 588  | 319  | 269 | 54  | 231 | 34 | 0 | 35 | 45  | 114 | 75  | 4701  | 5453.16  | 5547.18    |
| A96 | 12675/05 CR1 | 01-Jan-98 STANDAR PROPORT | 588  | 319  | 269 | 54  | 231 | 34 | 0 | 35 | 45  | 114 | 75  | 4701  | 5453.16  | 5547.18    |
| A96 | 12675/60 CL1 | 01-Jan-98 STANDAR PROPORT | 588  | 319  | 269 | 54  | 231 | 34 | 0 | 35 | 45  | 114 | 75  | 4701  | 5453.16  | 5547.18    |
| A96 | 12675/60 CR1 | 01-Jan-98 STANDAR PROPORT | 588  | 319  | 269 | 54  | 231 | 34 | 0 | 35 | 45  | 114 | 75  | 4701  | 5453.16  | 5547.18    |
| A96 | 12675/80 CL1 | 01-Jan-98 STANDAR PROPORT | 588  | 319  | 269 | 54  | 231 | 34 | 0 | 35 | 45  | 114 | 75  | 4701  | 5453.16  | 5547.18    |
| A96 | 12675/80 CR1 | 01-Jan-98 STANDAR PROPORT | 588  | 319  | 269 | 54  | 231 | 34 | 0 | 35 | 45  | 114 | 75  | 4701  | 5453.16  | 5547.18    |
| A96 | 12680/05 CL1 | 01-Jan-98 STANDAR PROPORT | 497  | 241  | 256 | 39  | 183 | 19 | 0 | 35 | 42  | 108 | 71  | 5065  | 5875.4   | 5976.7     |
| A96 | 12680/05 CR1 | 01-Jan-98 STANDAR PROPORT | 497  | 241  | 256 | 39  | 183 | 19 | 0 | 35 | 42  | 108 | 71  | 5065  | 5875.4   | 5976.7     |
| A96 | 12680/30 CL1 | 01-Jan-98 STANDAR PROPORT | 497  | 241  | 256 | 39  | 183 | 19 | 0 | 35 | 42  | 108 | 71  | 5065  | 5875.4   | 5976.7     |
| A96 | 12680/30 CR1 | 01-Jan-98 STANDAR PROPORT | 497  | 241  | 256 | 39  | 183 | 19 | 0 | 35 | 42  | 108 | 71  | 5065  | 5875.4   | 5976.7     |
| A96 | 12685/05 CL1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 5245  | 6084.2   | 6189.1     |
| A96 | 12685/05 CR1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 5245  | 6084.2   | 6189.1     |
| A96 | 12685/45 CL1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 5245  | 6084.2   | 6189.1     |
| A96 | 12685/45 CR1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 5245  | 6084.2   | 6189.1     |
| A96 | 12685/85 CL1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 12685/85 CL2 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 12685/85 CR1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 12685/90 CL1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 12685/90 CL2 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 12685/92 CL1 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 12685/92 CL2 | 01-Jan-98 STANDAR PROPORT | 831  | 416  | 415 | 77  | 282 | 57 | 0 | 41 | 80  | 203 | 91  | 0     | 0        | 0          |
| A96 | 17602/05 CL1 | 01-Jan-98 STANDAR PROPORT | 1288 | 841  | 447 | 217 | 588 | 36 | 0 | 19 | 85  | 250 | 93  | 16617 | 19275.72 | 19608.06 2 |
| A96 | 17602/05 CL2 | 01-Jan-98 STANDAR PROPORT | 117  | 76   | 41  | 20  | 53  | 3  | 0 | 2  | 8   | 23  | 8   | 1497  | 1736.52  |            |
| A96 | 17602/06 CL1 | 01-Jan-98 STANDAR PROPORT | 1288 | 841  | 447 | 217 | 588 | 36 | 0 | 19 | 85  | 250 | 93  | 16617 | 19275.72 | 19608.06 2 |
| A96 | 17602/06 CL2 | 01-Jan-98 STANDAR PROPORT | 117  | 76   | 41  | 20  | 53  | 3  | 0 | 2  | 8   | 23  | 8   | 1497  | 1736.52  | 1766.46    |
| A96 | 17605/05 CL1 | 01-Jan-98 STANDAR PROPORT | 1507 | 968  | 539 | 203 | 675 | 90 | 0 | 47 | 94  | 245 | 153 | 18316 | 21246.56 | 21612.88 2 |
| A96 | 17605/05 CL2 | 01-Jan-98 STANDAR PROPORT | 153  | 98   | 55  | 21  | 68  | 9  | 0 | 5  | 10  | 25  | 15  | 1858  | 2155.28  | 2192.44    |
| A96 | 17605/06 CL1 | 01-Jan-98 STANDAR PROPORT | 1507 | 968  | 539 | 203 | 675 | 90 | 0 | 47 | 94  | 245 | 153 | 18316 | 21246.56 | 21612.88 2 |
| A96 | 17605/06 CL2 | 01-Jan-98 STANDAR PROPORT | 153  | 98   | 55  | 21  | 68  | 9  | 0 | 5  | 10  | 25  | 15  | 1858  | 2155.28  | 2192.44    |
| A96 | 17605/60 CL1 | 01-Jan-98 STANDAR PROPORT | 1507 | 968  | 539 | 203 | 675 | 90 | 0 | 47 | 94  | 245 | 153 | 18316 | 21246.56 | 21612.88 2 |
| A96 | 17605/60 CL2 | 01-Jan-98 STANDAR PROPORT | 153  | 98   | 55  | 21  | 68  | 9  | 0 | 5  | 10  | 25  | 15  | 1858  | 2155.28  | 2192.44    |
| A96 | 17605/61 CL1 | 01-Jan-98 STANDAR PROPORT | 1507 | 968  | 539 | 203 | 675 | 90 | 0 | 47 | 94  | 245 | 153 |       |          | 21612.88 2 |
| A96 | 17605/61 CL2 | 01-Jan-98 STANDAR PROPORT | 153  | 98   | 55  | 21  | 68  | 9  | 0 | 5  | 10  | 25  | 15  | 1858  | 2155.28  |            |
| A96 | 17605/90 CL1 | 01-Jan-98 STANDAR PROPORT | 1660 | 1066 | 594 | 224 | 743 | 99 | 0 | 52 | 104 | 270 | 168 |       | 23401.84 |            |
| A96 | 17605/90 CR1 | 01-Jan-98 STANDAR PROPORT | 1660 | 1066 | 594 | 224 | 743 | 99 | 0 | 52 | 104 | 270 | 168 | 20174 | 23401.84 |            |
| A96 | 17612/01 CL1 | 01-Jan-98 STANDAR PROPORT | 953  | 587  | 366 | 138 | 411 | 38 | 0 | 38 | 51  | 182 | 95  | 12199 | 14150.84 |            |
| A96 | 17612/01 CL2 | 01-Jan-98 STANDAR PROPORT | 70   | 43   | 27  | 10  | 30  | 3  | 0 | 3  | 4   | 13  | 7   | 896   | 1039.36  | 1057.28    |
| A96 | 17612/05 CL1 | 01-Jan-98 STANDAR PROPORT | 953  | 587  | 366 | 138 | 411 | 38 | 0 | 38 | 51  | 182 | 95  | 12199 | 14150.84 |            |
| A96 | 17612/05 CL2 | 01-Jan-98 STANDAR PROPORT | 70   | 43   | 27  | 10  | 30  | 3  | 0 | 3  | 4   | 13  | 7   | 896   | 1039.36  | 1057.28    |
| A96 | 17612/06 CL1 | 01-Jan-98 STANDAR PROPORT | 953  | 587  | 366 | 138 | 411 | 38 | 0 | 38 | 51  | 182 | 95  | 12199 | 14150.84 |            |
| A96 | 17612/06 CL2 | 01-Jan-98 STANDAR PROPORT | 70   | 43   | 27  | 10  | 30  | 3  | 0 | 3  | 4   | 13  | 7   | 896   | 1039.36  |            |
|     |              |                           |      |      |     | . • |     | -  | ÷ | 5  | •   |     | •   | 200   |          |            |

| 6  | 2   | 231   | 267.96   | 272.58   | 291.06   | 0 |
|----|-----|-------|----------|----------|----------|---|
| 32 | 49  | 4731  | 5487.96  | 5582.58  | 5961.06  | 0 |
| 85 | 47  | 4248  | 4927.68  | 5012.64  | 5352.48  | 0 |
| 85 | 47  | 4248  | 4927.68  | 5012.64  | 5352.48  | 0 |
| 85 | 47  | 4248  | 4927.68  | 5012.64  | 5352.48  | 0 |
| 35 | 47  | 4248  | 4927.68  | 5012.64  | 5352.48  | 0 |
| 51 | 52  | 4685  | 5434.6   | 5528.3   | 5903.1   | 0 |
| 51 | 52  | 4685  | 5434.6   | 5528.3   | 5903.1   | 0 |
| 80 | 54  | 4966  | 5760.56  | 5859.88  | 6257.16  | 0 |
| 80 | 54  | 4966  | 5760.56  | 5859.88  | 6257.16  | 0 |
| 80 | 54  | 4966  | 5760.56  | 5859.88  | 6257.16  | 0 |
| 80 | 54  | 4966  | 5760.56  | 5859.88  | 6257.16  | 0 |
| 80 | 54  | 4966  | 5760.56  | 5859.88  | 6257.16  | 0 |
| 80 | 54  | 4966  | 5760.56  | 5859.88  | 6257.16  | 0 |
| 4  | 75  | 4701  | 5453.16  | 5547.18  | 5923.26  | 0 |
| 4  | 75  | 4701  | 5453.16  | 5547.18  | 5923.26  | 0 |
| 4  | 75  | 4701  | 5453.16  | 5547.18  | 5923.26  | 0 |
| 4  | 75  | 4701  | 5453.16  | 5547.18  | 5923.26  | 0 |
| 4  | 75  | 4701  | 5453.16  | 5547.18  | 5923.26  | 0 |
| 4  | 75  | 4701  | 5453.16  | 5547.18  | 5923.26  | 0 |
| 8( | 71  | 5065  | 5875.4   | 5976.7   | 6381.9   | 0 |
| 8  | 71  | 5065  | 5875.4   | 5976.7   | 6381.9   | 0 |
| 8  | 71  | 5065  | 5875.4   | 5976.7   | 6381.9   | 0 |
| 8  | 71  | 5065  | 5875.4   | 5976.7   | 6381.9   | 0 |
| )3 | 91  | 5245  | 6084.2   | 6189.1   | 6608.7   | 0 |
| )3 | 91  | 5245  | 6084.2   | 6189.1   | 6608.7   | 0 |
| )3 | 91  | 5245  | 6084.2   | 6189.1   | 6608.7   | 0 |
| )3 | 91  | 5245  | 6084.2   | 6189.1   | 6608.7   | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| )3 | 91  | 0     | 0        | 0        | 0        | 0 |
| 50 | 93  | 16617 | 19275.72 | 19608.06 | 20937.42 | 0 |
| 23 | 8   | 1497  | 1736.52  | 1766.46  | 1886.22  | 0 |
| 50 | 93  | 16617 | 19275.72 | 19608.06 | 20937.42 | 0 |
| 23 | 8   | 1497  | 1736.52  | 1766.46  | 1886.22  | 0 |
| 5  | 153 | 18316 | 21246.56 | 21612.88 | 23078.16 | 0 |
| 25 | 15  | 1858  | 2155.28  | 2192.44  | 2341.08  | 0 |
| 5  | 153 | 18316 | 21246.56 | 21612.88 | 23078.16 | 0 |
| 25 | 15  | 1858  | 2155.28  | 2192.44  | 2341.08  | 0 |
| 5  | 153 | 18316 | 21246.56 | 21612.88 | 23078.16 | 0 |
| 25 | 15  | 1858  | 2155.28  | 2192.44  | 2341.08  | 0 |
| 5  | 153 | 18316 | 21246.56 | 21612.88 | 23078.16 | 0 |
| 25 | 15  | 1858  | 2155.28  | 2192.44  | 2341.08  | 0 |
| 0  | 168 | 20174 | 23401.84 | 23805.32 | 25419.24 | 0 |
| 0  | 168 | 20174 | 23401.84 | 23805.32 | 25419.24 | 0 |
| 32 | 95  | 12199 | 14150.84 | 14394.82 | 15370.74 | 0 |
| 3  | 7   | 896   | 1039.36  | 1057.28  | 1128.96  | 0 |
| 32 | 95  | 12199 | 14150.84 | 14394.82 | 15370.74 | 0 |
| 3  | 7   | 896   | 1039.36  | 1057.28  | 1128.96  | 0 |
| 32 | 95  | 12199 | 14150.84 | 14394.82 | 15370.74 | 0 |
| 3  | 7   | 896   | 1039.36  | 1057.28  | 1128.96  | 0 |
|    |     |       |          | -        |          | - |

| A96 | 17612/90 CL1  | 01-Jan-98 STANDAR PROPORT | 1025 | 630 | 395 | 148 | 441 | 41 | 0      | 41 | 55 | 196 | 103 | 13095  |
|-----|---------------|---------------------------|------|-----|-----|-----|-----|----|--------|----|----|-----|-----|--------|
| A96 | 17612/90 CR1  | 01-Jan-98 STANDAR PROPORT | 1025 | 630 | 395 | 148 | 441 | 41 | 0      | 41 | 55 | 196 | 103 | 13095  |
| A96 | 17614/03 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 6560   |
| A96 | 17614/03 CL2  | 01-Jan-98 STANDAR PROPORT | 43   | 23  | 20  | 3   | 18  | 2  | 0      | 1  | 3  | 13  | 3   | 403    |
| A96 | 17614/04 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 6560   |
| A96 | 17614/04 CL2  | 01-Jan-98 STANDAR PROPORT | 43   | 23  | 20  | 3   | 18  | 2  | 0      | 1  | 3  | 13  | 3   | 403    |
| A96 | 17614/30 CL1  | 01-Jan-98 STANDAR PROPORT | 743  | 404 | 339 | 59  | 305 | 40 | 0      | 14 | 47 | 223 | 55  | 6963   |
| A96 | 17614/30 CR1  | 01-Jan-98 STANDAR PROPORT | 743  | 404 | 339 | 59  | 305 | 40 | 0      | 14 | 47 | 223 | 55  | 6963   |
| A96 | 17614/40 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 6560   |
| A96 | 17614/40 CL2  | 01-Jan-98 STANDAR PROPORT | 43   | 23  | 20  | 3   | 18  | 2  | 0      | 1  | 3  | 13  | 3   | 403    |
| A96 | 17614/41 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 6560   |
| A96 | 17614/41 CL2  | 01-Jan-98 STANDAR PROPORT | 43   | 23  | 20  | 3   | 18  | 2  | 0      | 1  | 3  | 13  | 3   | 403    |
| A96 | 17614/70 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 6560   |
| A96 | 17614/70 CL2  | 01-Jan-98 STANDAR PROPORT | 43   | 23  | 20  | 3   | 18  | 2  | 0      | 1  | 3  | 13  | 3   | 403    |
| A96 | 17614/71 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 6560   |
| A96 | 17614/71 CL2  | 01-Jan-98 STANDAR PROPORT | 43   | 23  | 20  | 3   | 18  | 2  | 0      | 1  | 3  | 13  | 3   | 403    |
| A96 | 17618/05 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/05 CR1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/20 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/20 CL2  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/21 CL1  | 01-Jan-98 STANDAR PROPORT | 770  | 489 | 281 | 60  | 377 | 52 | 0      | 27 | 37 | 152 | 65  | 0      |
| A96 | 17618/21 CL2  | 01-Jan-98 STANDAR PROPORT | 49   | 31  | 18  | 4   | 24  | 3  | 0      | 2  | 2  | 10  | 4   | 0      |
| A96 | 17618/50 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/50 CR1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/70 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/70 CL2  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/71 CL1  | 01-Jan-98 STANDAR PROPORT | 770  | 489 | 281 | 60  | 377 | 52 | 0      | 27 | 37 | 152 | 65  | 0      |
| A96 | 17618/71 CL2  | 01-Jan-98 STANDAR PROPORT | 49   | 31  | 18  | 4   | 24  | 3  | 0      | 2  | 2  | 10  | 4   | 0      |
| A96 | 17618/90 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17618/90 CR1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17622/10 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17622/10 CL2  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17622/10 CR1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17622/11 CL1  | 01-Jan-98 STANDAR PROPORT | 770  | 489 | 281 | 60  | 377 | 52 | 0      | 27 | 37 | 152 | 65  | 0      |
| A96 | 17622/11 CL2  | 01-Jan-98 STANDAR PROPORT | 49   | 31  | 18  | 4   | 24  | 3  | 0      | 2  | 2  | 10  | 4   | 0      |
| A96 | 17622/30 CL1  | 01-Jan-98 STANDAR PROPORT | 1288 | 841 | 447 | 217 | 588 | 36 | 0      | 19 | 85 | 250 | 93  | 0      |
| A96 | 17622/31 CL1  | 01-Jan-98 STANDAR PROPORT | 1288 | 841 | 447 | 217 | 588 | 36 | 0      | 19 | 85 | 250 | 93  | 0      |
| A96 | 17622/50 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17622/50 CL2  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17622/51 CL1  | 01-Jan-98 STANDAR PROPORT | 770  | 489 | 281 | 60  | 377 | 52 | 0      | 27 | 37 | 152 | 65  | 0      |
| A96 | 17622/51 CL2  | 01-Jan-98 STANDAR PROPORT | 49   | 31  | 18  | 4   | 24  | 3  | 0      | 2  | 2  | 10  | 4   | 0      |
| A96 | 17623/10 CL1  | 01-Jan-98 STANDAR PROPORT | 1288 | 841 | 447 | 217 | 588 | 36 | 0      | 19 | 85 | 250 | 93  | 0      |
| A96 | 17623/11 CL1  | 01-Jan-98 STANDAR PROPORT | 1288 | 841 | 447 | 217 | 588 | 36 | 0      | 19 | 85 | 250 | 93  | 0      |
| A96 | 17623/20 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17623/20 CL2  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17623/21 CL1  | 01-Jan-98 STANDAR PROPORT | 770  | 489 | 281 | 60  | 377 | 52 | 0      | 27 | 37 | 152 | 65  | 0      |
| A96 | 17623/21 CL2  | 01-Jan-98 STANDAR PROPORT | 49   | 31  | 18  | 4   | 24  | 3  | 0      | 2  | 2  | 10  | 4   | 0      |
| A96 | 17623/70 CL1  | 01-Jan-98 STANDAR PROPORT | 1288 | 841 | 447 | 217 | 588 | 36 | 0      | 19 | 85 | 250 | 93  | 0      |
| A96 | 17623/71 CL1  | 01-Jan-98 STANDAR PROPORT | 1288 | 841 | 447 | 217 | 588 | 36 | 0      | 19 | 85 | 250 | 93  | 0      |
| A96 | 17623/90 CL1  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0      | 13 | 44 | 210 | 52  | 0      |
| A96 | 17623/90 CL2  | 01-Jan-98 STANDAR PROPORT | 699  | 380 | 319 | 56  | 287 | 37 | 0<br>0 | 13 | 44 | 210 | 52  | 0<br>0 |
| A96 | 17623/91+ CL1 | 01-Jan-98 STANDAR PROPORT | 770  | 489 | 281 | 60  | 377 | 52 | 0      | 27 | 37 | 152 | 65  | 0      |
| A96 | 17623/91+ CL2 | 01-Jan-98 STANDAR PROPORT | 49   | 31  | 18  | 4   | 24  | 3  | Õ      | 2  | 2  | 10  | 4   | 0<br>0 |
| A96 | 17625/50 CL1  | 01-Jan-98 STANDAR PROPORT | 822  | 522 | 300 | 64  | 402 | 56 | Õ      | 29 | 39 | 162 | 70  | 8232   |
| A96 | 17625/50 CR1  | 01-Jan-98 STANDAR PROPORT | 822  | 522 | 300 | 64  | 402 | 56 | Ő      | 29 | 39 | 162 | 70  | 8232   |
|     |               |                           | 022  | 022 | 000 | 01  |     |    | 5      |    |    |     |     | 0202   |

| 15190.2<br>15190.2<br>7609.6<br>467.48<br>7609.6<br>467.48<br>8077.08<br>8077.08<br>7609.6<br>467.48 | 15452.1<br>15452.1<br>7740.8<br>475.54<br>7740.8<br>475.54<br>8216.34<br>8216.34<br>7740.8<br>475.54 | 16499.7<br>16499.7<br>8265.6<br>507.78<br>8265.6<br>507.78<br>8773.38<br>8773.38<br>8265.6<br>507.78 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 7609.6<br>467.48<br>7609.6<br>467.48<br>7609.6<br>467.48<br>0                                        | 7740.8<br>475.54<br>7740.8<br>475.54<br>7740.8<br>475.54<br>0                                        | 8265.6<br>507.78<br>8265.6<br>507.78<br>8265.6<br>507.78<br>0                                        | 0<br>0<br>0<br>0<br>0<br>0                     |
| 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                      | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0                |
| 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0                                                                                | 0<br>0<br>0<br>0<br>0                                                                                | 0<br>0<br>0<br>0<br>0<br>0                     |
| 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0                                                                                | 0<br>0<br>0<br>0<br>0                                                                                | 0<br>0<br>0<br>0<br>0<br>0                     |
| 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                      | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0                |
| 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0                |
| 0<br>0<br>0<br>9549.12<br>9549.12                                                                    | 0<br>0<br>0<br>9713.76<br>9713.76                                                                    | 0<br>0<br>0<br>10372.32<br>10372.32                                                                  | 0<br>0<br>0<br>0<br>0                          |

| A96 | 17625/70 CL1 | 01-Jan-98 STANDAR PROPORT | 770 | 489 | 281 | 60 | 377 | 52 | 0 | 27 | 37 | 152 | 65 | 7731 |
|-----|--------------|---------------------------|-----|-----|-----|----|-----|----|---|----|----|-----|----|------|
| A96 | 17625/70 CL2 | 01-Jan-98 STANDAR PROPORT | 49  | 31  | 18  | 4  | 24  | 3  | 0 | 2  | 2  | 10  | 4  | 501  |
| A96 | 17625/75 CL1 | 01-Jan-98 STANDAR PROPORT | 770 | 489 | 281 | 60 | 377 | 52 | 0 | 27 | 37 | 152 | 65 | 7731 |
| A96 | 17625/75 CL2 | 01-Jan-98 STANDAR PROPORT | 49  | 31  | 18  | 4  | 24  | 3  | 0 | 2  | 2  | 10  | 4  | 501  |
| A96 | 17625/90 CL1 | 01-Jan-98 STANDAR PROPORT | 822 | 522 | 300 | 64 | 402 | 56 | 0 | 29 | 39 | 162 | 70 | 8232 |
| A96 | 17625/90 CR1 | 01-Jan-98 STANDAR PROPORT | 822 | 522 | 300 | 64 | 402 | 56 | 0 | 29 | 39 | 162 | 70 | 8232 |
| A96 | 17632/05 CL1 | 01-Jan-98 STANDAR PROPORT | 479 | 290 | 189 | 20 | 221 | 49 | 0 | 12 | 34 | 108 | 35 | 6283 |
| A96 | 17632/05 CR1 | 01-Jan-98 STANDAR PROPORT | 479 | 290 | 189 | 20 | 221 | 49 | 0 | 12 | 34 | 108 | 35 | 6283 |
| A96 | 17632/50 CL1 | 01-Jan-98 STANDAR PROPORT | 479 | 290 | 189 | 20 | 221 | 49 | 0 | 12 | 34 | 108 | 35 | 6283 |
| A96 | 17632/50 CR1 | 01-Jan-98 STANDAR PROPORT | 479 | 290 | 189 | 20 | 221 | 49 | 0 | 12 | 34 | 108 | 35 | 6283 |
| A96 | 17632/90 CL1 | 01-Jan-98 STANDAR PROPORT | 479 | 290 | 189 | 20 | 221 | 49 | 0 | 12 | 34 | 108 | 35 | 6283 |
| A96 | 17632/90 CR1 | 01-Jan-98 STANDAR PROPORT | 479 | 290 | 189 | 20 | 221 | 49 | 0 | 12 | 34 | 108 | 35 | 6283 |
| A96 | 17635/05 CL1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/05 CR1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/33 CL1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/33 CR1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/50 CL1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/50 CR1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/82 CL1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/82 CR1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/83 CL1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17635/83 CR1 | 01-Jan-98 STANDAR PROPORT | 437 | 281 | 156 | 34 | 221 | 26 | 0 | 11 | 20 | 95  | 30 | 4631 |
| A96 | 17640/00 CL1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/00 CR1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/14 CL1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/14 CR1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/36 CL1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/36 CR1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/42 CL1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/42 CR1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/56 CL1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/56 CR1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/62 CL1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17640/62 CR1 | 01-Jan-98 STANDAR PROPORT | 396 | 192 | 204 | 29 | 135 | 28 | 0 | 23 | 19 | 109 | 53 | 3008 |
| A96 | 17644/00 CL1 | 01-Jan-98 STANDAR PROPORT | 473 | 298 | 175 | 35 | 237 | 26 | 0 | 11 | 19 | 107 | 38 | 4177 |
| A96 | 17644/00 CR1 | 01-Jan-98 STANDAR PROPORT | 473 | 298 | 175 | 35 | 237 | 26 | 0 | 11 | 19 | 107 | 38 | 4177 |
| A96 | 17649/00 CL1 | 01-Jan-98 STANDAR PROPORT | 495 | 287 | 208 | 40 | 210 | 37 | 0 | 20 | 27 | 115 | 46 | 3936 |
| A96 | 17649/00 CR1 | 01-Jan-98 STANDAR PROPORT | 495 | 287 | 208 | 40 | 210 | 37 | 0 | 20 | 27 | 115 | 46 | 3936 |
| A96 | 17649/53 CL1 | 01-Jan-98 STANDAR PROPORT | 495 | 287 | 208 | 40 | 210 | 37 | 0 | 20 | 27 | 115 | 46 | 3936 |
| A96 | 17649/53 CR1 | 01-Jan-98 STANDAR PROPORT | 495 | 287 | 208 | 40 | 210 | 37 | 0 | 20 | 27 | 115 | 46 | 3936 |
| A96 | 17649/56 CL1 | 01-Jan-98 STANDAR PROPORT | 495 | 287 | 208 | 40 | 210 | 37 | 0 | 20 | 27 | 115 | 46 | 3936 |
| A96 | 17649/56 CR1 | 01-Jan-98 STANDAR PROPORT | 495 | 287 | 208 | 40 | 210 | 37 | 0 | 20 | 27 | 115 | 46 | 3936 |
| A96 | 17654/00 CL1 | 01-Jan-98 STANDAR PROPORT | 417 | 233 | 184 | 17 | 188 | 28 | 0 | 16 | 27 | 106 | 35 | 2975 |
| A96 | 17654/00 CR1 | 01-Jan-98 STANDAR PROPORT | 417 | 233 | 184 | 17 | 188 | 28 | 0 | 16 | 27 | 106 | 35 | 2975 |
| A96 | 17654/14 CL1 | 01-Jan-98 STANDAR PROPORT | 417 | 233 | 184 | 17 | 188 | 28 | 0 | 16 | 27 | 106 | 35 | 2975 |
| A96 | 17654/14 CR1 | 01-Jan-98 STANDAR PROPORT | 417 | 233 | 184 | 17 | 188 | 28 | 0 | 16 | 27 | 106 | 35 | 2975 |
| A96 | 17658/00 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/00 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/01 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/01 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/04 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/04 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/05 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/05 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/20 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
|     |              |                           |     |     |     |    |     |    |   |    |    |     |    |      |

| 8967.96 | 9122.58 | 9741.06  | 0 |
|---------|---------|----------|---|
| 581.16  | 591.18  | 631.26   | 0 |
| 8967.96 | 9122.58 | 9741.06  | 0 |
| 581.16  | 591.18  | 631.26   | 0 |
|         |         |          |   |
| 9549.12 | 9713.76 | 10372.32 | 0 |
| 9549.12 | 9713.76 | 10372.32 | 0 |
| 7288.28 | 7413.94 | 7916.58  | 0 |
| 7288.28 | 7413.94 | 7916.58  | 0 |
| 7288.28 | 7413.94 | 7916.58  | 0 |
| 7288.28 | 7413.94 | 7916.58  | 0 |
| 7288.28 | 7413.94 | 7916.58  | 0 |
| 7288.28 | 7413.94 | 7916.58  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
|         |         |          |   |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 5371.96 | 5464.58 | 5835.06  | 0 |
| 3489.28 |         |          |   |
|         | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
|         |         | 3790.08  |   |
| 3489.28 | 3549.44 |          | 0 |
| 3489.28 | 3549.44 | 3790.08  | 0 |
| 4845.32 | 4928.86 | 5263.02  | 0 |
| 4845.32 | 4928.86 | 5263.02  | 0 |
| 4565.76 | 4644.48 | 4959.36  | 0 |
| 4565.76 | 4644.48 | 4959.36  | 0 |
| 4565.76 | 4644.48 | 4959.36  | 0 |
| 4565.76 | 4644.48 | 4959.36  | 0 |
| 4565.76 | 4644.48 | 4959.36  | 0 |
| 4565.76 | 4644.48 | 4959.36  | 0 |
| 3451    | 3510.5  | 3748.5   | 0 |
|         |         |          |   |
| 3451    | 3510.5  | 3748.5   | 0 |
| 3451    | 3510.5  | 3748.5   | 0 |
| 3451    | 3510.5  | 3748.5   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
|         |         |          |   |
| 3723.6  | 3787.8  | 4044.6   | 0 |
| 3723.6  | 3787.8  | 4044.6   | 0 |
|         |         |          |   |

| A96 | 17658/20 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
|-----|--------------|---------------------------|-----|-----|-----|----|-----|----|---|----|----|-----|----|------|
| A96 | 17658/38 CL1 | 01-Jan-98 STANDAR PROPORT | 422 | 235 | 187 | 21 | 193 | 21 | 0 | 10 | 21 | 105 | 51 | 3060 |
| A96 | 17658/38 CL2 | 01-Jan-98 STANDAR PROPORT | 19  | 11  | 8   | 1  | 9   | 1  | 0 | 0  | 1  | 5   | 2  | 150  |
| A96 | 17658/38 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/50 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/50 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/58 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/58 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/68 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17658/68 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17661/00 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17661/00 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17665/00 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17665/00 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17665/89 CL1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17665/89 CR1 | 01-Jan-98 STANDAR PROPORT | 443 | 246 | 197 | 22 | 202 | 22 | 0 | 11 | 22 | 111 | 53 | 3210 |
| A96 | 17670/00 CL1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/00 CR1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/11 CL1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/11 CR1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/46 CL1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/46 CR1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/73 CL1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17670/73 CR1 | 01-Jan-98 STANDAR PROPORT | 456 | 209 | 247 | 40 | 138 | 31 | 0 | 21 | 34 | 192 | 0  | 4525 |
| A96 | 17675/00 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/00 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/13 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/13 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/20 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/20 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/50 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/50 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/70 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/70 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/91 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/91 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/98 CL1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
| A96 | 17675/98 CR1 | 01-Jan-98 STANDAR PROPORT | 359 | 191 | 168 | 29 | 140 | 22 | 0 | 22 | 31 | 97  | 18 | 2619 |
|     |              |                           |     |     |     |    |     |    |   |    |    |     |    |      |

| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
|---|---------|---------|---------|---|
| ) | 3549.6  | 3610.8  | 3855.6  | 0 |
| ) | 174     | 177     | 189     | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| ) | 3723.6  | 3787.8  | 4044.6  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 5 | 5249    | 5339.5  | 5701.5  | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| ) | 3038.04 | 3090.42 | 3299.94 | 0 |
| ) | 3038.04 | 3090.42 | 3299.94 | 0 |
| ) | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
| ) | 3038.04 | 3090.42 | 3299.94 | 0 |
| ) | 3038.04 | 3090.42 | 3299.94 | 0 |
| 9 | 3038.04 | 3090.42 | 3299.94 | 0 |
|   |         |         |         |   |

| Motor Cvcl Ca | ar Aadf I | Liaht Good Ot | ther Goo Section Name                | Section Tv S | Section Le Speed | Lim Start Node End Node Networ                         | k Region     | Area Division Class          | Maintenan Environ  | me End Date |
|---------------|-----------|---------------|--------------------------------------|--------------|------------------|--------------------------------------------------------|--------------|------------------------------|--------------------|-------------|
| 25            | 5298      | 904           | 0 A96/A98 ROUNDABOUT, FOCAHABERS     |              | 1169             | 30 A96/A98 R JCT B9104 Single,                         |              |                              | Single All FRural  | 01-Jan-99   |
| 25            | 5298      | 904           | 0 A96/A98 ROUNDABOUT, FOCAHABERS     |              | 1169             | 30 A96/A98 R JCT B9104 Single,                         |              | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9104 SPEY BAY TO JUNCT   |              | 1630             | 60 JCT B910 <sup>2</sup> JCT B901 <sup>5</sup> Single, | •            | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9104 SPEY BAY TO JUNCT   |              | 1630             | 60 JCT B910 <sup>2</sup> JCT B901 <sup>5</sup> Single, |              |                              | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9015 GARMOUTH TO JUNC    |              | 1000             | 60 JCT B9015 JCT COWI Single,                          |              | 5                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9015 GARMOUTH TO JUNC    |              | 1000             | 60 JCT B9015 JCT COWI Single,                          | •            | •                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION COWFORDS FARM TO JUNC     |              | 1520             | 60 JCT COWI JCT MARC Single,                           | •            | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION COWFORDS FARM TO JUNC     |              | 1520             | 60 JCT COWI JCT MARC Single,                           | •            | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION MARCHFIELD TO JUNCTION    |              | 2010             | 60 JCT MARC JCT THRE Single,                           |              | •                            | Single All FRural  | 01-Jan-99   |
|               |           |               | 0 JUNCTION MARCHFIELD TO JUNCTION    |              |                  | 60 JCT MARCJCT THRE Single,                            |              |                              | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           |                                      |              | 2010             |                                                        |              |                              | •                  |             |
| 20            | 4375      | 872           | 0 JUNCTION THREAPLAND TO LHANBRY     |              | 1060             | 60 JCT THRE LHANBRY Single,                            |              |                              | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION THREAPLAND TO LHANBRY     |              | 1060             | 60 JCT THRE LHANBRY Single,                            |              | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           |                                      | ROUNDAE      | 127              | 0 LHANBRY LHANBRY ?                                    |              | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 20            | 4375      | 872           |                                      | ROUNDAE      | 127              | 0 LHANBRY LHANBRY ?                                    |              | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 LHANBRYDE RBT (E) TO LHANBRYDE F   |              | 1075             | 0 LHANBRY LHANBRY Single,                              |              | •                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 LHANBRYDE RBT (E) TO LHANBRYDE F   |              | 1075             | 0 LHANBRY LHANBRY Single,                              |              | •                            | Single All F Rural | 01-Jan-99   |
| 20            | 4375      | 872           |                                      | ROUNDAE      | 160              | 0 LHANBRY LHANBRY ?                                    |              | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 20            | 4375      | 872           |                                      | ROUNDAE      | 160              | 0 LHANBRY LHANBRY ?                                    | •            | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 LHANBRYDE ROUNDABOUT (W) TO JUI    |              | 700              | 0 LHANBRY B9103 RO Single,                             | •            | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 LHANBRYDE ROUNDABOUT (W) TO JUI    |              | 700              | 0 LHANBRY B9103 RO Single,                             |              | •                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9103 ROTHES TO JCTB910   | SINGLE 2-    | 212              | 0 B9103 RO JCT B9103 Single,                           | •            | -                            | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9103 ROTHES TO JCTB910   | SINGLE 2-    | 212              | 0 B9103 RO JCT B9103 Single,                           | dat Grampian | North East North East Single | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9103 LOSSIEMOUTH TO BL   | SINGLE 2-    | 1840             | 60 JCT B910: EASTRIGC Single,                          | dat Grampian | North East North East Single | Single All FRural  | 01-Jan-99   |
| 20            | 4375      | 872           | 0 JUNCTION B9103 LOSSIEMOUTH TO BL   | SINGLE 2-    | 1840             | 60 JCT B910: EASTRIGC Single,                          | dat Grampian | North East North East Single | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 BURN OF LINKWOOD TO JUNCTION RE    | SINGLE 2-    | 330              | 60 EASTRIGC JCT REIKE Single,                          | dat Grampian | North East North East Single | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 BURN OF LINKWOOD TO JUNCTION RE    | SINGLE 2-    | 330              | 60 EASTRIG( JCT REIKE Single,                          | dat Grampian | North East North East Single | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 JUNCTION REIKET LANE TO JUNCTION   | SINGLE 2-    | 510              | 40 JCT REIKE JCT PINEF Single,                         |              | •                            | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 JUNCTION REIKET LANE TO JUNCTION   |              | 510              | 40 JCT REIKE JCT PINEF Single,                         | •            | -                            | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 JCT PINEFIELD ESTATE TO PANSPORT   |              | 760              | 40 JCT PINEF PANSPOR Single,                           | •            | -                            | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 JCT PINEFIELD ESTATE TO PANSPORT   |              | 760              | 40 JCT PINEF PANSPOR Single,                           |              | •                            | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          |                                      | ROUNDAE      | 90               | 40 PANSPOR PANSPOR?                                    | •            | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 34            | 5715      | 1016          |                                      | ROUNDAE      | 90               | 40 PANSPOR PANSPOR?                                    | •            | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 PANSPORT ROUNDABOUT TO QUEEN       |              | 290              | 30 PANSPOR QUEEN STSingle,                             |              | •                            | Single All FRural  | 01-Jan-99   |
| 34            | 5715      | 1016          | 0 PANSPORT ROUNDABOUT TO QUEEN       |              | 290              | 30 PANSPOR QUEEN STSingle,                             |              | •                            | Single All FRural  | 01-Jan-99   |
| 52            | 7151      | 1284          |                                      | ROUNDAE      | 110              | 30 QUEEN SIQUEEN SI?                                   |              |                              | Single All FUrban  | 01-Jan-99   |
| 52            | 7151      | 1284          |                                      | ROUNDAE      | 110              | 30 QUEEN SIQUEEN SI?                                   | •            | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 49            | 6748      | 1212          | 0 WITH: QUEEN STREET ROUNDABOUT      |              | 60               | 30 QUEEN STUDEEN ST                                    | •            | •                            | Dual All Pt Rural  | 01-Jan-99   |
| 49            | 403       | 72            | 0 WITH: QUEEN STREET ROUNDABOUT      |              | 60               | 30 QUEEN STJN L N CO Dual Tr                           |              |                              | Dual All Pt Rural  | 01-Jan-99   |
| 0             | 403       | 0             | 0 WITH: QUEEN STREET ROUNDABOUT      |              | 60               | 30 QUEEN STJN L N CO Dual Tr                           |              |                              | Dual All Pt Rural  | 01-Jan-99   |
| -             |           | 1212          | 0 AGAINST: JN L N COLLEGE ST - QUEEN |              |                  | 30 JN L N COQUEEN STDual Tr                            |              |                              | Dual All PuRural   | 01-Jan-99   |
| 49            | 6748      |               | 0 AGAINST: JN L N COLLEGE ST - QUEEN |              | 60<br>60         | 30 JN L N CO QUEEN STDual TI                           |              |                              | Dual All PL Rural  | 01-Jan-99   |
| 3             | 403       | 72            |                                      |              | 60               |                                                        |              |                              |                    |             |
| 52<br>52      | 7151      | 1284          |                                      |              | 290              | 30 JN L N CO CUMMING Single,                           | •            | -                            | Single All FRural  | 01-Jan-99   |
| 52            | 7151      | 1284          |                                      |              | 290              | 30 JN L N CO CUMMING Single,                           | •            | -                            | Single All FRural  | 01-Jan-99   |
| 49            | 6748      | 1212          | 0 WITH: CUMMING ST RBT TAPER TO CL   |              | 70               | 30 CUMMING CUMMING Dual Tr                             |              |                              | Dual All PuRural   | 01-Jan-99   |
| 3             | 403       | 72            | 0 WITH: CUMMING ST RBT TAPER TO CL   |              | 70               | 30 CUMMING CUMMING Dual Tr                             |              |                              | Dual All PuRural   | 01-Jan-99   |
| 49            | 6748      | 1212          | 0 AGAINST: CUMMING ST RBT - CUMMIN   |              | 80               |                                                        |              | North East North East Dual   | Dual All Pt Rural  | 01-Jan-99   |
| 3             | 403       | 72            | 0 AGAINST: CUMMING ST RBT - CUMMIN   |              | 80               |                                                        | •            | North East North East Dual   | Dual All PuRural   | 01-Jan-99   |
| 42            | 5435      | 656           |                                      | ROUNDAE      | 100              | 30 CUMMING CUMMING?                                    | •            | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 42            | 5435      | 656           |                                      | ROUNDAE      | 100              | 30 CUMMING CUMMING?                                    | •            | North East North East Single | Single All FUrban  | 01-Jan-99   |
| 39            | 5140      | 620           | 0 WITH: CUMMING STREET RBT TO STAF   |              | 90               | 30 CUMMING END SAFE Dual Tr                            |              |                              | Dual All Pt Rural  | 01-Jan-99   |
| 2             | 295       | 36            | 0 WITH: CUMMING STREET RBT TO STAF   |              | 90               | 30 CUMMING END SAFE Dual Tr                            |              |                              | Dual All Pu Rural  | 01-Jan-99   |
| 39            | 5140      | 620           | 0 AGAINST: END SAFETY FENCE L - CUM  |              | 90               |                                                        |              | North East North East Dual   | Dual All Pu Rural  | 01-Jan-99   |
| 2             | 295       | 36            | 0 AGAINST: END SAFETY FENCE L - CUM  |              | 90               |                                                        |              | North East North East Dual   | Dual All Pt Rural  | 01-Jan-99   |
| 42            | 5435      | 656           | 0 START SAFETY FENCE TO NORTHFIEL    | SINGLE 2-    | 350              | 30 END SAFE NORTHFIE Single,                           | dat Grampian | North East North East Single | Single All F Rural | 01-Jan-99   |
|               |           |               |                                      |              |                  |                                                        |              |                              |                    |             |

| 42 | 5435 | 656 | 0 START SAFETY FENCE TO NORTHFIEL SINGLE 2-    | 350  | 30 END SAFE NORTHFIE Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
|----|------|-----|------------------------------------------------|------|---------------------------------------------------------------------------------------------|-----------|
| 42 | 5435 | 656 | 0 NORTHFIELD ROUNDABOUT ROUNDAE                | 120  | 30 NORTHFIE NORTHFIE? Grampian North East North East Single Single All FUrban               | 01-Jan-99 |
| 42 | 5435 | 656 | 0 NORTHFIELD ROUNDABOUT ROUNDAE                | 120  | 30 NORTHFIE NORTHFIE? Grampian North East North East Single Single All FUrban               | 01-Jan-99 |
| 42 | 5435 | 656 | 0 NORTHFIELD ROUNDABOUT TO DR. GI SINGLE 2-    | 322  | 30 NORTHFIEDR. GRAY Single, dat Grampian North East North East Single Single All F Rural    | 01-Jan-99 |
| 42 | 5435 | 656 | 0 NORTHFIELD ROUNDABOUT TO DR. GI SINGLE 2-    | 322  | 30 NORTHFIEDR. GRAY Single, dat Grampian North East North East Single Single All F Rural    | 01-Jan-99 |
| 42 | 5435 | 656 | 0 DR GRAYS ROUNDABOUT EAST TO DR ROUNDAE       | 98   | 30 DR. GRAY DR. GRAY ? ? North East DEFAULT Single Single All FUrban                        | 01-Jan-99 |
| 42 | 5435 | 656 | 0 DR GRAYS ROUNDABOUT EAST TO DR ROUNDAE       | 98   | 30 DR. GRAY DR. GRAY ? ? North East DEFAULT Single Single All FUrban                        | 01-Jan-99 |
| 42 | 5435 | 656 | 0 DR. GRAYS ROUNDABOUT TO RIVER L SINGLE 2-    | 722  | 30 DR. GRAY RIVER LO Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 42 | 5435 | 656 | 0 DR. GRAYS ROUNDABOUT TO RIVER L SINGLE 2-    | 722  | 30 DR. GRAY RIVER LO Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 31 | 3254 | 559 | 0 RIVER LOSSIE BRIDGE TO JUNCTION ESINGLE 2-   | 3750 | 60 RIVER LO JCT B9013 Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 31 | 3254 | 559 | 0 RIVER LOSSIE BRIDGE TO JUNCTION ESINGLE 2-   | 3750 | 60 RIVER LO JCT B9013 Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION B9013 BURGHEAD TO JUNC SINGLE 2-    | 1880 | 60 JCT B901: KINFAUNS Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION B9013 BURGHEAD TO JUNC SINGLE 2-    | 1880 | 60 JCT B901: KINFAUNS Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION BEECHBRAE TO START OF SINGLE 2-     | 410  | 60 KINFAUNS START CL Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION BEECHBRAE TO START OF SINGLE 2-     | 410  | 60 KINFAUNS START CL Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 29 | 3087 | 530 | 0 START OF CLIMBING LANE TO JUNCTI (WIDE SIN)  | 896  | 60 START CL? Single, dat Grampian North East North East Single Single All FRural            | 01-Jan-99 |
| 2  | 167  | 29  | 0 START OF CLIMBING LANE TO JUNCTI(WIDE SIN(   | 896  | 60 START CL? Single, dat Grampian North East North East Single Single All FRural            | 01-Jan-99 |
| 31 | 3254 | 559 | 0 START OF CLIMBING LANE TO JUNCTI(WIDE SIN(   | 896  | 60 START CL? Single, dat Grampian North East North East Single Single All FRural            | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION SMIDDY PLACE TO JUNCTIC SINGLE 2-   | 328  | 60 ? JCT C4 CL Single, dat Grampian North East North East Single Single All F Rural         | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION SMIDDY PLACE TO JUNCTIC SINGLE 2-   | 328  | 60 ? JCT C4 CL Single, dat Grampian North East North East Single Single All F Rural         | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION C4 CLOVES TO JUNCTION A SINGLE 2-   | 944  | 60 JCT C4 CL JCT ALVE: Single, dat Grampian North East North East Single Single All F Rural | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION C4 CLOVES TO JUNCTION A SINGLE 2-   | 944  | 60 JCT C4 CL JCT ALVE: Single, dat Grampian North East North East Single Single All F Rural | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION ALVES CHURCH TO JUNCTI SINGLE 2-    | 4500 | 60 JCT ALVE JCT KINLC Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 31 | 3254 | 559 | 0 JUNCTION ALVES CHURCH TO JUNCTI SINGLE 2-    | 4500 | 60 JCT ALVE JCT KINLC Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 0  | 0    | 0   | 0 JUNCTION KINLOSS TO FORRES ENTE SINGLE 2-    | 1992 | 60 JCT KINLC FORRES E Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 0  | 0    | 0   | 0 JUNCTION KINLOSS TO FORRES ENTE SINGLE 2-    | 1992 | 60 JCT KINLC FORRES E Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 0  | 0    | 0   | 0 FORRES ENTERPRISE PARK ROUNDAL ROUNDAE       | 135  | 60 FORRES EFORRES E? ? North East DEFAULT Single Single All FUrban                          | 01-Jan-99 |
| 0  | 0    | 0   | 0 FORRES ENTERPRISE PARK ROUNDAL ROUNDAE       | 135  | 60 FORRES EFORRES E? ? North East DEFAULT Single Single All FUrban                          | 01-Jan-99 |
| 0  | 0    | 0   | 0 FORRES ENTERPRISE PARK RBT TO F SINGLE 2-    | 1586 | 60 FORRES EFINDHORI Single, dat ? North East North East Single Single All FRural            | 01-Jan-99 |
| 0  | 0    | 0   | 0 FORRES ENTERPRISE PARK RBT TO F SINGLE 2-    | 1586 | 60 FORRES EFINDHORI Single, dat ? North East North East Single Single All FRural            | 01-Jan-99 |
| 21 | 3553 | 460 | 0 FINDHORN ROAD ROUNDABOUT ROUNDAE             | 130  | 60 FINDHORI FINDHORI? Grampian North East North East Single Single All FUrban               | 01-Jan-99 |
| 0  | 0    | 0   | 0 FINDHORN ROAD ROUNDABOUT ROUNDAE             | 130  | 60 FINDHORI FINDHORI? Grampian North East North East Single Single All FUrban               | 01-Jan-99 |
| 21 | 3553 | 460 | 0 FINDHORN ROAD ROUNDABOUT ROUNDAE             | 130  | 60 FINDHORI FINDHORI? Grampian North East North East Single Single All FUrban               | 01-Jan-99 |
| 21 | 3553 | 460 | 0 FINDHORN ROAD ROUNDABOUT TO SISINGLE 2-      | 1460 | 60 FINDHORI START DI\ Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 21 | 3553 | 460 | 0 FINDHORN ROAD ROUNDABOUT TO SISINGLE 2-      | 1460 | 60 FINDHORI START DI\ Single, dat Grampian North East North East Single Single All F Rural  | 01-Jan-99 |
| 19 | 3371 | 437 | 0 WITH: START DIVIDED C'WAY TO END I DUAL 2-L/ | 480  | 40 START DIVEND DIVIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural      | 01-Jan-99 |
| 1  | 181  | 23  | 0 WITH: START DIVIDED C'WAY TO END I DUAL 2-L/ | 480  | 40 START DIVEND DIVIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural      | 01-Jan-99 |
| 0  | 0    | 0   | 0 WITH: START DIVIDED C'WAY TO END I DUAL 2-L/ | 480  | 40 START DIVEND DIVIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural      | 01-Jan-99 |
| 19 | 3371 | 437 | 0 AGAINST: START DIVIDED CWAY - END DUAL 2-L/  | 480  | 40? ? Dual Trunk Grampian North East North East Dual Dual All Pu Rural                      | 01-Jan-99 |
| 1  | 181  | 23  | 0 AGAINST: START DIVIDED CWAY - END DUAL 2-L/  | 480  | 40? ? Dual Trunk Grampian North East North East Dual Dual All Pu Rural                      | 01-Jan-99 |
| 21 | 3553 | 460 | 0 END DIVIDED C'WAY TO GRESHOP RO SINGLE 2-    | 350  | 40 END DIVIE GRESHOF Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 21 | 3553 | 460 | 0 END DIVIDED C'WAY TO GRESHOP RO SINGLE 2-    | 350  | 40 END DIVIE GRESHOF Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 21 | 3553 | 460 | 0 GRESHOP ROUNDABOUT ROUNDAE                   | 130  | 60 GRESHOF GRESHOF? Grampian North East North East Single Single All FUrban                 | 01-Jan-99 |
| 0  | 0    | 0   | 0 GRESHOP ROUNDABOUT ROUNDAE                   | 130  | 60 GRESHOF GRESHOF? Grampian North East North East Single Single All FUrban                 | 01-Jan-99 |
| 21 | 3553 | 460 | 0 GRESHOP ROUNDABOUT ROUNDAE                   | 130  | 60 GRESHOF GRESHOF? Grampian North East North East Single Single All FUrban                 | 01-Jan-99 |
| 27 | 3619 | 583 | 0 GRESHOP ROUNDABOUT TO JUNCTIO SINGLE 2-      | 1870 | 60 GRESHOF JCT EARN Single, dat Grampian North East North East Single Single All F Rural    | 01-Jan-99 |
| 27 | 3619 | 583 | 0 GRESHOP ROUNDABOUT TO JUNCTIO SINGLE 2-      | 1870 | 60 GRESHOF JCT EARN Single, dat Grampian North East North East Single Single All F Rural    | 01-Jan-99 |
| 27 | 3619 | 583 | 0 JUNCTION EARNHILL TO JUNCTION DY SINGLE 2-   | 2410 | 60 JCT EARN JCT DYKE Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 27 | 3619 | 583 | 0 JUNCTION EARNHILL TO JUNCTION DY SINGLE 2-   | 2410 | 60 JCT EARN JCT DYKE Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
| 27 | 3619 | 583 | 0 JUNCTION DYKE/KINTESSACK TO JCT SINGLE 2-    | 1020 | 60 JCT DYKE? Single, dat Grampian North East North East Single Single All F Rural           | 01-Jan-99 |
| 27 | 3619 | 583 | 0 JUNCTION DYKE/KINTESSACK TO JCT SINGLE 2-    | 1020 | 60 JCT DYKE? Single, dat Grampian North East North East Single Single All F Rural           | 01-Jan-99 |
| 25 | 3442 | 554 | 0 JUNCTION DYKE OF BRODIE TO JUNCTWIDE SIN(    | 1150 | 60 ? JCT FEDD Single, dat Grampian North East North East Single Single All F Rural          | 01-Jan-99 |
| 1  | 177  | 29  | 0 JUNCTION DYKE OF BRODIE TO JUNCTWIDE SIN(    | 1150 | 60 ? JCT FEDD Single, dat Grampian North East North East Single Single All F Rural          | 01-Jan-99 |
| 27 | 3619 | 583 | 0 JUNCTION DYKE OF BRODIE TO JUNCTWIDE SIN(    | 1150 | 60 ? JCT FEDD Single, dat Grampian North East North East Single Single All F Rural          | 01-Jan-99 |
| 25 | 3442 | 554 | 0 JUNCTION FEDDAN TO HIGHLAND COL WIDE SIN(    | 890  | 60 JCT FEDD HIGHLANE Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99 |
|    |      |     |                                                |      |                                                                                             |           |

| 1   | 177   | 29   | 0 JUNCTION FEDDAN TO HIGHLAND COL WIDE SIN(                                                | 890        | 60 JCT FEDD HIGHLANI Single, dat Grampian North East North East Single Single All F Rural   | 01-Jan-99              |
|-----|-------|------|--------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------|------------------------|
| 27  | 3619  | 583  | 0 JUNCTION FEDDAN TO HIGHLAND COL WIDE SIN(                                                | 890        | 60 JCT FEDD HIGHLANI Single, dat Grampian North East North East Single Single All FRural    | 01-Jan-99              |
| 34  | 3035  | 650  | 0 HIGHLAND COUNCIL BDY TO B9101 AU SINGLE 2-                                               | 3570       | 60 HIGHLANI B9101 AUI Single, dat Highland North East North East Single Single All F Rural  | 01-Jan-99              |
| 34  | 3035  | 650  | 0 HIGHLAND COUNCIL BDY TO B9101 AU SINGLE 2-                                               | 3570       | 60 HIGHLANI B9101 AUI Single, dat Highland North East North East Single Single All F Rural  | 01-Jan-99              |
| 34  | 3035  | 650  | 0 B9101 AULDEARN JN - B9111 AULDEAR SINGLE 2-                                              | 2120       | 60 B9101 AUI B9111 AUI Single, dat Highland North East North East Single Single All F Rural | 01-Jan-99              |
| 34  | 3035  | 650  | 0 B9101 AULDEARN JN - B9111 AULDEAR SINGLE 2-                                              | 2120       | 60 B9101 AUI B9111 AUI Single, dat Highland North East North East Single Single All F Rural | 01-Jan-99              |
| 45  | 3431  | 674  | 0 B9111 AULDEARN JN - A939 GRANTOW SINGLE 2-                                               | 1620       | 60 B9111 AUI A939 GRA Single, dat Highland North East North East Single Single All F Rural  | 01-Jan-99              |
| 45  | 3431  | 674  | 0 B9111 AULDEARN JN - A939 GRANTOW SINGLE 2-                                               | 1620       | 60 B9111 AUI A939 GRA Single, dat Highland North East North East Single Single All F Rural  | 01-Jan-99              |
| 27  | 3781  | 642  | 0 A939 GRANTOWN JUNC TO MINI ROUN SINGLE 2-                                                | 700        | 30 A939 GRA NAIRN MII Single, dat Highland North East North East Single Single All F Rural  | 01-Jan-99              |
| 27  | 3781  | 642  | 0 A939 GRANTOWN JUNC TO MINI ROUN SINGLE 2-                                                | 700        | 30 A939 GRA NAIRN MII Single, dat Highland North East North East Single Single All F Rural  | 01-Jan-99              |
| 27  | 3781  | 642  | 0 NAIRN MINI ROUNDABOUT ROUNDAE                                                            | 80         | 30 NAIRN MITNAIRN MIT? Highland North East North East Single Single All FUrban              | 01-Jan-99              |
| 27  | 3781  | 642  | 0 NAIRN MINI ROUNDABOUT ROUNDAE                                                            | 80         | 30 NAIRN MITNAIRN MIT? Highland North East North East Single Single All FUrban              | 01-Jan-99              |
| 27  | 3781  | 642  | 0 MINI ROUNDABOUT TO X-RDS AT TRAI SINGLE 2-                                               | 2190       | 30 ? X-RDS AT Single, dat Highland North East North East Single Single All F Rural          | 01-Jan-99              |
| 27  | 3781  | 642  | 0 MINI ROUNDABOUT TO X-RDS AT TRAI SINGLE 2-                                               | 2190       | 30 ? X-RDS AT Single, dat Highland North East North East Single Single All F Rural          | 01-Jan-99              |
| 26  | 3508  | 580  | 0 X-RDS AT TRADESPARK TO DISTRICT I SINGLE 2-                                              | 4310       | 60 X-RDS AT DISTRICT Single, dat Highland North East North East Single Single All F Rural   | 01-Jan-99              |
| 26  | 3508  | 580  | 0 X-RDS AT TRADESPARK TO DISTRICT I SINGLE 2-                                              | 4310       | 60 X-RDS AT DISTRICT Single, dat Highland North East North East Single Single All F Rural   | 01-Jan-99              |
| 26  | 3508  | 580  | 0 DISTRICT BOUNDARY TO FLEMINGTON SINGLE 2-                                                | 1760       | 60 DISTRICT FLEMING1Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 26  | 3508  | 580  | 0 DISTRICT BOUNDARY TO FLEMINGTON SINGLE 2-                                                | 1760       | 60 DISTRICT FLEMING1Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 26  | 3508  | 580  | 0 FLEMINGTON X-RDS TO CULLODEN PC SINGLE 2-                                                | 1230       | 60 FLEMING1CULLODE Single, dat Highland North East North East Single Single All F Rural     | 01-Jan-99              |
| 26  | 3508  | 580  | 0 FLEMINGTON X-RDS TO CULLODEN PC SINGLE 2-                                                | 1230       | 60 FLEMING1CULLODE Single, dat Highland North East North East Single Single All F Rural     | 01-Jan-99              |
| 23  | 3876  | 671  | 0 CULLODEN POTTERY TO JUNCTION T(SINGLE 2-                                                 | 3020       | 60 CULLODE JUNCTION Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 23  | 3876  | 671  | 0 CULLODEN POTTERY TO JUNCTION TO SINGLE 2-                                                | 3020       | 60 CULLODE JUNCTION Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 23  | 3876  | 671  | 0 JUNCTION TO CROY TO B9093 DALCR(SINGLE 2-                                                | 4020       | 60 JUNCTION AIRPORT Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 23  | 3876  | 671  | 0 JUNCTION TO CROY TO B9093 DALCR(SINGLE 2-                                                | 4020       | 60 JUNCTION AIRPORT Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 57  | 3701  | 657  | 0 AIRPORT JUNCTION TO ALLANFEARN SINGLE 2-                                                 | 3100       | 60 AIRPORT B9154 MO Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 57  | 3701  | 657  | 0 AIRPORT JUNCTION TO ALLANFEARN SINGLE 2-                                                 | 3100       | 60 AIRPORT B9154 MO Single, dat Highland North East North East Single Single All FRural     | 01-Jan-99              |
| 57  | 3701  | 657  | 0 ALLANFEARN JCT TO SEAFIELD ROUN SINGLE 2-                                                | 2678       | 60 ALLANFE/ SEAFIELD Single, dat Highland North East North East Single Single All FRural    | 01-Jan-99              |
| 57  | 3701  | 657  | 0 ALLANFEARN JCT TO SEAFIELD ROUN SINGLE 2-                                                | 2678       | 60 ALLANFE/ SEAFIELD Single, dat Highland North East North East Single Single All FRural    | 01-Jan-99              |
| 57  | 3701  | 037  | 0 SEAFIELD ROUNDABOUT ROUNDAE                                                              | 2078       | 50 SEAFIELD SEAFIELD Single, dat highland North East North East Single Single All Futban    | 01-Jan-99              |
| 0   | 0     | 0    | 0 SEAFIELD ROUNDABOUT ROUNDAE                                                              | 254<br>254 | 50 SEAFIELD SEAFIELD ? ? North East North East Single Single All FUrban                     | 01-Jan-99<br>01-Jan-99 |
| 0   | 0     | 0    | 0 SEAFIELD ROUNDABOUT ROUNDAE                                                              | 254<br>254 | 50 SEAFIELD SEAFIELD ? ? North East North East Single Single All FUrban                     | 01-Jan-99<br>01-Jan-99 |
| 0   | 0     | 0    | 0 WITH:SEAFIELD ROUNDABOUT TO RAI DUAL 2-L4                                                | 234<br>745 | 50 SEAFIELD SEAFIELD ? ? North East North East Single Dual All Pural                        | 01-Jan-99              |
| 0   | 0     | 0    | 0 WITH:SEAFIELD ROUNDABOUT TO RAI DUAL 2-LF                                                | 745        | 50 SEAFIELD END DUAL Dual Trunk? North East North East Dual Dual All Pu Rural               | 01-Jan-99              |
| 0   | 0     | 0    | 0 AGAINST:RAIGMORE INTERCHANGE T(DUAL 2-L4                                                 | 745        | 50 RAIGMOR SEAFIELD Dual Trunk? North East North East Dual Dual All Pu Rural                | 01-Jan-99              |
| 0   | 0     | 0    | 0 AGAINST:RAIGMORE INTERCHANGE TOUAL 2-LF                                                  | 745<br>745 | 50 RAIGMOR SEAFIELD Dual Trunk? North East North East Dual Dual All Pt Rural                | 01-Jan-99<br>01-Jan-99 |
| 07  | Ũ     | 1792 | 0 WITH:GREAT NORTHERN RD RBT TO ADUAL 2-L4                                                 |            | 40 GT NORTI A947 OLD Dual Trunk Grampian North East North East Dual Dual All Purkural       | 01-Jan-99<br>01-Jan-99 |
| 87  | 13458 | 1783 |                                                                                            | 1586       |                                                                                             |                        |
| 8   | 1212  | 161  | 0 WITH:GREAT NORTHERN RD RBT TO A DUAL 2-L4<br>0 AGAINST:OLD MELDRUM RD TO GT NC DUAL 2-L4 | 1586       | •                                                                                           | 01-Jan-99              |
| 87  | 13458 | 1783 |                                                                                            | 1590       | P P                                                                                         | 01-Jan-99              |
| 8   | 1212  | 161  | 0 AGAINST:OLD MELDRUM RD TO GT NC DUAL 2-LA                                                | 1590       |                                                                                             | 01-Jan-99              |
| 136 | 14951 | 1722 | 0 WITH: JL MANOR DRIVE TO JR OLD ME DUAL 2-L4                                              | 1390       | 60 MANOR D OLD MELE Dual Trunk Grampian North East North East Dual Dual All PuRural         | 01-Jan-99              |
| 14  | 1517  | 175  | 0 WITH: JL MANOR DRIVE TO JR OLD ME DUAL 2-L4                                              | 1390       | 60 MANOR D OLD MELE Dual Trunk Grampian North East North East Dual Dual All PuRural         | 01-Jan-99              |
| 136 | 14951 | 1722 | 0 AGAINST: JL MANOR DRIVE TO JR OLD DUAL 2-LA                                              | 1380       | 60 JL MANOF MANOR D Dual Trunk Grampian North East North East Dual Dual All PuRural         | 01-Jan-99              |
| 14  | 1517  | 175  | 0 AGAINST: JL MANOR DRIVE TO JR OLD DUAL 2-LA                                              | 1380       | 60 JL MANOF MANOR D Dual Trunk Grampian North East North East Dual Dual All PuRural         | 01-Jan-99              |
| 136 | 14951 | 1722 | 0 WITH: JR OLD MELDRUM ROAD TO A94DUAL 2-L4                                                | 500        | 60 OLD MELE A947 RBT Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
| 14  | 1517  | 175  | 0 WITH: JR OLD MELDRUM ROAD TO A94 DUAL 2-LA                                               | 500        | 60 OLD MELE A947 RBT Dual Trunk Grampian North East North East Dual Dual All PuRural        | 01-Jan-99              |
| 136 | 14951 | 1722 | 0 AGAINST: JR OLD MELDRUM RD TO A9 DUAL 2-LA                                               | 490        | 60 ? JL MANOF Dual Trunk Grampian North East North East Dual Dual All Pu Rural              | 01-Jan-99              |
| 14  | 1517  | 175  | 0 AGAINST: JR OLD MELDRUM RD TO A9 DUAL 2-LA                                               | 490        | 60 ? JL MANOF Dual Trunk Grampian North East North East Dual Dual All Pu Rural              | 01-Jan-99              |
| 150 | 16468 | 1897 | 0 A947 ROUNDABOUT ROUNDAE                                                                  | 230        | 60 A947 RBT A947 RBT ? Grampian North East North East Single Single All FUrban              | 01-Jan-99              |
| 150 | 16468 | 1897 | 0 A947 ROUNDABOUT ROUNDAE                                                                  | 230        | 60 A947 RBT A947 RBT ? Grampian North East North East Single Single All FUrban              | 01-Jan-99              |
| 64  | 9838  | 1342 | 0 WITH: A947 RBT (E) TO END OF DEDIC/DUAL 2-LA                                             | 350        | 60 A947 RBT A947 RBT Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
| 5   | 723   | 99   | 0 WITH: A947 RBT (E) TO END OF DEDIC/ DUAL 2-L4                                            | 350        | 60 A947 RBT A947 RBT Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
| 64  | 9838  | 1342 | 0 WITH: A947 ROUNDABOUT (W) TO SCL DUAL 2-LA                                               | 550        | 60 A947 RBT SCLATTIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
| 5   | 723   | 99   | 0 WITH: A947 ROUNDABOUT (W) TO SCL DUAL 2-LA                                               | 550        | 60 A947 RBT SCLATTIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
| 64  | 9838  | 1342 | 0 AGAINST: A947 RBT (W) TO SCLATTIE FDUAL 2-LA                                             | 550        | 60 A947 RBT SCLATTIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
| 5   | 723   | 99   | 0 AGAINST: A947 RBT (W) TO SCLATTIE FDUAL 2-LA                                             | 550        | 60 A947 RBT SCLATTIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural       | 01-Jan-99              |
|     |       |      |                                                                                            |            |                                                                                             |                        |

| ~~ | 40504 |      |                                                | 450  |                                                                                                                   |
|----|-------|------|------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------|
| 69 | 10561 | 1441 | 0 SCLATTIE PARK ROUNDABOUT ROUNDAE             | 150  | 60 SCLATTIE SCLATTIE ? Grampian North East North East Single Single All FUrban 01-Jan-99                          |
| 69 | 10561 | 1441 | 0 SCLATTIE PARK ROUNDABOUT ROUNDAE             | 150  | 60 SCLATTIE SCLATTIE ? Grampian North East North East Single Single All FUrban 01-Jan-99                          |
| 54 | 5167  | 640  | 0 WITH: SCLATTIE PARK RBT TO DYCE DUAL 2-LA    | 1120 | 60 SCLATTIE DYCE DRI Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 3  | 317   | 39   | 0 WITH: SCLATTIE PARK RBT TO DYCE DUAL 2-LA    | 1120 | 60 SCLATTIE DYCE DRI Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 54 | 5167  | 640  | 0 AGAINST: SCLATTIE PARK RBT TO DY(DUAL 2-LA   | 1130 | 60 SCLATTIE DYCE DRI Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 3  | 317   | 39   | 0 AGAINST: SCLATTIE PARK RBT TO DY( DUAL 2-L4  | 1130 | 60 SCLATTIE DYCE DRI Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 57 | 5485  | 680  | 0 DYCE DRIVE RBT (E) - DYCE DRIVE RB ROUNDAE   | 180  | 60 DYCE DRI DYCE DRI ? Grampian North East North East Single Single All FUrban 01-Jan-99                          |
| 57 | 5485  | 680  | 0 DYCE DRIVE RBT (E) - DYCE DRIVE RB ROUNDAE   | 180  | 60 DYCE DRI DYCE DRI ? Grampian North East North East Single Single All FUrban 01-Jan-99                          |
| 54 | 5167  | 640  | 0 WITH: DYCE DRIVE RBT (W) TO JUNCT DUAL 2-LA  | 2820 | 70 DYCE DRI JUNCTION Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 3  | 317   | 39   | 0 WITH: DYCE DRIVE RBT (W) TO JUNCT DUAL 2-LA  | 2820 | 70 DYCE DRI JUNCTION Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 54 | 5167  | 640  | 0 AGAINST: JN R B979 - DYCE DRIVE RBIDUAL 2-LA | 2820 | 70 JUNCTION SCLATTIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 3  | 317   | 39   | 0 AGAINST: JN R B979 - DYCE DRIVE RBIDUAL 2-LA | 2820 | 70 JUNCTION SCLATTIE Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                   |
| 54 | 5167  | 640  | 0 WITH: JCT (L) B979 TO JCT CLINTERTY WIDE DUA | 2485 | 70 ?         JCT CLINT Dual Trunk Grampian North East North East Dual         Dual All Pt Rural         01-Jan-99 |
| 3  | 317   | 39   | 0 WITH: JCT (L) B979 TO JCT CLINTERTY WIDE DUA | 2485 | 70 ? JCT CLINT Dual Trunk Grampian North East North East Dual Dual All Pt Rural 01-Jan-99                         |
| 54 | 5167  | 640  | 0 AGAINST: JCT CLINTERTY RBT TO JCT WIDE DUA   | 2475 | 70 JCT CLINT JUNCTION Dual Trunk?         North East North East Dual         Dual All Pt Rural         01-Jan-99  |
| 3  | 317   | 39   | 0 AGAINST: JCT CLINTERTY RBT TO JCT WIDE DUA   | 2475 | 70 JCT CLINTJUNCTION Dual Trunk? North East North East Dual Dual All Pt Rural 01-Jan-99                           |
| 0  | 0     | 0    | 0 CLINTERTY ROUNDABOUT ROUNDAE                 | 180  | 70 CLINTERT CLINTERT? ? North East DEFAULT Dual Dual All Pt Urban 01-Jan-99                                       |
| 0  | 0     | 0    | 0 CLINTERTY ROUNDABOUT ROUNDAE                 | 180  | 70 CLINTERT CLINTERT ? ? North East DEFAULT Dual Dual All Pt Urban 01-Jan-99                                      |
| 0  | 0     | 0    | 0 WITH: JCT CLINTERTY RBT TO JCT KINI WIDE DUA | 1490 | 70 CLINTERT KINELLAR Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 WITH: JCT CLINTERTY RBT TO JCT KINI WIDE DUA | 1490 | 70 CLINTERT KINELLAR Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 AGAINST: JCT KINELLAR RBT TO JCT C WIDE DUA  | 1490 | 70 JCT KINEL JCT CLINT Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                            |
| 0  | 0     | 0    | 0 AGAINST: JCT KINELLAR RBT TO JCT C WIDE DUA  | 1490 | 70 JCT KINEL JCT CLINT Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                            |
| 0  | 0     | 0    | 0 KINELLAR ROUNDABOUT ROUNDAE                  | 180  | 70 KINELLAR KINELLAR ? ? North East DEFAULT Dual Dual All Pt Urban 01-Jan-99                                      |
| 0  | 0     | 0    | 0 KINELLAR ROUNDABOUT ROUNDAE                  | 180  | 70 KINELLAR KINELLAR ? ? North East DEFAULT Dual Dual All Pt Urban 01-Jan-99                                      |
| 0  | 0     | 0    | 0 WITH: JCT KINELLAR RBT TO JCT BROC WIDE DUA  | 2990 | 70 KINELLAR BROOMHI Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 WITH: JCT KINELLAR RBT TO JCT BROC WIDE DUA  | 2990 | 70 KINELLAR BROOMHI Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 AGAINST:BROOMHILL RBT TO KINELLAWIDE DUA     | 2990 | 70 ? ? Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                                            |
| 0  | 0     | 0    | 0 AGAINST: BROOMHILL RBT TO KINELLA WIDE DUA   | 2990 | 70? ? Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                                             |
| 0  | 0     | 0    | 0 BROOMHILL ROUNDABOUT ROUNDAE                 | 150  | 70 BROOMHI BROOMHI ? ? North East DEFAULT Dual Dual All Pt Urban 01-Jan-99                                        |
| 0  | 0     | 0    | 0 BROOMHILL ROUNDABOUT ROUNDAE                 | 150  | 70 BROOMHI BROOMHI ? ? North East DEFAULT Dual Dual All Pt Urban 01-Jan-99                                        |
| 0  | 0     | 0    | 0 WITH: JCT BROOMHILL RBT TO JCT B97 DUAL 2-LA | 1540 | 70 BROOMHI B977 DUN Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 WITH: JCT BROOMHILL RBT TO JCT B97 DUAL 2-LA | 1540 | 70 BROOMHI B977 DUN Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 WITH: JCT BROOMHILL RBT TO JCT B97 DUAL 2-L# | 1540 | 70 BROOMHI B977 DUN Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 AGAINST: JCT B977 SLIP TO BROOMHIL DUAL 2-L# | 1540 | 70 JCT B977 BROOMHI Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 AGAINST: JCT B977 SLIP TO BROOMHIL DUAL 2-L# | 1540 | 70 JCT B977 BROOMHI Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                               |
| 0  | 0     | 0    | 0 WITH:SLIP ROAD ON NORTHBOUND SLIP 1-LAI      | 470  | 70? ? ? ? North East DEFAULT Dual Dual All Pt Suburban 01-Jan-99                                                  |
| 0  | 0     | 0    | 0 AGAINST:SLIP OFF SOUTHBOUND SLIP 1-LAI       | 420  | 70? ? ? ? North East DEFAULT Dual Dual All Pt Suburban 01-Jan-99                                                  |
| 0  | 0     | 0    | 0 JCT B977 NB SLIP ON TO JCT TAVELTY WIDE DUA  | 1100 | 70 B977 DUN JCT TAVE Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 JCT B977 NB SLIP ON TO JCT TAVELTY WIDE DUA  | 1100 | 70 B977 DUN JCT TAVE Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 AGAINST: JCT TAVELTY SLIP TO B977 SWIDE DUA  | 1050 | 70 JCT TAVE JCT B977 Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 AGAINST: JCT TAVELTY SLIP TO B977 SWIDE DUA  | 1050 | 70 JCT TAVE JCT B977 Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 WITH: SLIP RD OFF NORTHBOUND TA\ SLIP 1-LAI  | 320  | 70? ? ? ? North East DEFAULT Dual Dual All Pt Suburban 01-Jan-99                                                  |
| 0  | 0     | 0    | 0 AGAINST: SLIP ROAD ON SOUTHBOUN SLIP 1-LAI   | 370  | 70 START SL? ? ? North East DEFAULT Dual Dual All Pt Suburban 01-Jan-99                                           |
| 0  | 0     | 0    | 0 WITH: OFF SLIP NB TO ON SLIP NB TA\ WIDE DUA | 900  | 70 JCT TAVE ON SLIP N Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                             |
| 0  | 0     | 0    | 0 WITH: OFF SLIP NB TO ON SLIP NB TA\ WIDE DUA | 900  | 70 JCT TAVE ON SLIP N Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                             |
| 0  | 0     | 0    | 0 AGAINST: OFF SLIP SB TO ON SLIP SB TWIDE DUA | 950  | 70 OFF SLIP JCT TAVE Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 AGAINST: OFF SLIP SB TO ON SLIP SB WIDE DUA  | 950  | 70 OFF SLIP JCT TAVE Dual Trunk? North East DEFAULT Dual Dual All Pt Rural 01-Jan-99                              |
| 0  | 0     | 0    | 0 WITH: SLIP ROAD ON NORTHBOUND T, SLIP 1-LAI  | 540  | 70? ? ? ? North East DEFAULT Dual Dual All Pt Suburban 01-Jan-99                                                  |
| 0  | 0     | 0    | 0 AGAINST: SLIP ROAD OFF SOUTHBOUI SLIP 1-LAI  | 560  | 70 ? START SL ? ? North East DEFAULT Dual Dual All Pt Suburban 01-Jan-99                                          |
| 0  | 0     | 0    | 0 WITH:SLIP ON NB TAVELTY INT TO THAWIDE DUA   | 1268 | 70 ON SLIP N THAINSTC Dual Trunk? North East DEFAULT Dual Dual All Pu Rural 01-Jan-99                             |
| 0  | 0     | 0    | 0 WITH:SLIP ON NB TAVELTY INT TO TH/ WIDE DUA  | 1268 | 70 ON SLIP N THAINSTC Dual Trunk? North East DEFAULT Dual Dual All Pu Rural 01-Jan-99                             |
| 0  | 0     | 0    | 0 AGAINST: THAINSTONE RBT TO OFF SIWIDE DUA    | 1266 | 70 THAINSTC? Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                           |
| 0  | 0     | 0    | 0 AGAINST: THAINSTONE RBT TO OFF SIWIDE DUA    | 1266 | 70 THAINSTC? Dual Trunk Grampian North East North East Dual Dual All Pu Rural 01-Jan-99                           |
| 56 | 6439  | 917  | 0 THAINSTONE ROUNDABOUT (E) ROUNDAE            | 200  | 70 THAINSTC THAINSTC? Grampian North East North East Single Single All FUrban 01-Jan-99                           |
| 56 | 6439  | 917  | 0 THAINSTONE ROUNDABOUT (E) ROUNDAE            | 200  | 70 THAINSTC THAINSTC? Grampian North East North East Single Single All FUrban 01-Jan-99                           |
|    |       |      |                                                |      |                                                                                                                   |

| 52 | 6047 | 861 | 0 WITH: THAINSTONE RBT (W) TO INVER DUAL 2-LA   | 1150 |                                                                                              | )1-Jan-99 |
|----|------|-----|-------------------------------------------------|------|----------------------------------------------------------------------------------------------|-----------|
| 3  | 392  | 56  | 0 WITH: THAINSTONE RBT (W) TO INVER DUAL 2-LA   | 1150 |                                                                                              | )1-Jan-99 |
| 52 | 6047 | 861 | 0 AGAINST: INVERURIE RBT (E) - THAINS DUAL 2-LA | 1140 | I I I I I I I I I I I I I I I I I I I                                                        | )1-Jan-99 |
| 3  | 392  | 56  | 0 AGAINST: INVERURIE RBT (E) - THAINS DUAL 2-LA | 1140 |                                                                                              | )1-Jan-99 |
| 56 | 6439 | 917 | 0 INVERURIE ROUNDABOUT (E) ROUNDAE              | 200  |                                                                                              | )1-Jan-99 |
| 56 | 6439 | 917 | 0 INVERURIE ROUNDABOUT (E) ROUNDAE              | 200  |                                                                                              | )1-Jan-99 |
| 27 | 5174 | 606 | 0 INVERURIE RBT (W) TO BLACKHALL RESINGLE 2-    | 2410 |                                                                                              | 01-Jan-99 |
| 27 | 5174 | 606 | 0 INVERURIE RBT (W) TO BLACKHALL RESINGLE 2-    | 2410 |                                                                                              | 01-Jan-99 |
| 27 | 5174 | 606 | 0 BLACKHALL ROUNDABOUT (E) ROUNDAE              | 130  |                                                                                              | )1-Jan-99 |
| 27 | 5174 | 606 | 0 BLACKHALL ROUNDABOUT (E) ROUNDAE              | 130  |                                                                                              | 01-Jan-99 |
| 27 | 5174 | 606 | 0 BLACKHALL RBT (W) TO JUNCTION BR SINGLE 2-    | 2560 |                                                                                              | )1-Jan-99 |
| 27 | 5174 | 606 | 0 BLACKHALL RBT (W) TO JUNCTION BR SINGLE 2-    | 2560 |                                                                                              | 01-Jan-99 |
| 20 | 3696 | 480 | 0 JCT BRANDSBOTT TO JUNCTION WHIT SINGLE 2-     | 3870 |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JCT BRANDSBOTT TO JUNCTION WHIT SINGLE 2-     | 3870 |                                                                                              | 01-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION WHITEFORD TO JUNCTION SINGLE 2-      | 3110 |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION WHITEFORD TO JUNCTION SINGLE 2-      | 3110 |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION B9002 OYNE FORK TO JUNC SINGLE 2-    | 6000 |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION B9002 OYNE FORK TO JUNC SINGLE 2-    | 6000 |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION B992 INSCH TO JUNCTION ESINGLE 2-    | 100  |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION B992 INSCH TO JUNCTION ESINGLE 2-    | 100  |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION B992 AUCHTERLESS TO JUI SINGLE 2-    | 3090 |                                                                                              | )1-Jan-99 |
| 20 | 3696 | 480 | 0 JUNCTION B992 AUCHTERLESS TO JUI SINGLE 2-    | 3090 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION A920 OLDMELDRUM TO JUN SINGLE 2-     | 1850 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION A920 OLDMELDRUM TO JUN SINGLE 2-     | 1850 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION YTHANWELLS TO JUNCTION SINGLE 2-     | 2960 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION YTHANWELLS TO JUNCTION SINGLE 2-     | 2960 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION CLINKSTONE TO START CLI SINGLE 2-    | 1340 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION CLINKSTONE TO START CLI SINGLE 2-    | 1340 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 START CLIMBING LANE TO END CLIMB SINGLE 2-    | 1440 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 START CLIMBING LANE TO END CLIMB SINGLE 2-    | 1440 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 END CLIMBING LANE TO JUNCTION WF SINGLE 2-    | 1110 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 END CLIMBING LANE TO JUNCTION WF SINGLE 2-    | 1110 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION WRAE'S ROAD TO JUNCTIO SINGLE 2-     | 5190 |                                                                                              | )1-Jan-99 |
| 13 | 2225 | 377 | 0 JUNCTION WRAE'S ROAD TO JUNCTIO SINGLE 2-     | 5190 |                                                                                              | )1-Jan-99 |
| 28 | 3199 | 481 | 0 JUNCTION A97 BANFF TO JUNCTION B, SINGLE 2-   | 490  | 60 JCT A97 B JCT BATT Single, dat Grampian North East North East Single Single All F Rural   | )1-Jan-99 |
| 28 | 3199 | 481 | 0 JUNCTION A97 BANFF TO JUNCTION B, SINGLE 2-   | 490  |                                                                                              | )1-Jan-99 |
| 16 | 3013 | 415 | 0 JUNCTION BATTLEHILL TO RIVER BOG SINGLE 2-    | 750  |                                                                                              | )1-Jan-99 |
| 16 | 3013 | 415 | 0 JUNCTION BATTLEHILL TO RIVER BOG SINGLE 2-    | 750  | 60 JCT BATT RIVER BO Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 16 | 3013 | 415 | 0 RIVER BOGIE BRIDGE (E) TO RIVER BCSINGLE 2-   | 40   | 60 RIVER BO RIVER BO Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 16 | 3013 | 415 | 0 RIVER BOGIE BRIDGE (E) TO RIVER BCSINGLE 2-   | 40   | 60 RIVER BO RIVER BO Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 16 | 3013 | 415 | 0 RIVER BOGIE BRIDGE (W) TO HUNTLY SINGLE 2-    | 600  | 60 RIVER BO HUNTLY R Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 16 | 3013 | 415 | 0 RIVER BOGIE BRIDGE (W) TO HUNTLY SINGLE 2-    | 600  | 60 RIVER BO HUNTLY R Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 16 | 2177 | 367 | 0 HUNTLY ROUNDABOUT ROUNDAE                     | 220  | 60 HUNTLY FHUNTLY F? Grampian North East North East Single Single All FUrban                 | )1-Jan-99 |
| 16 | 2177 | 367 | 0 HUNTLY ROUNDABOUT ROUNDAE                     | 220  | 60 HUNTLY FHUNTLY F? Grampian North East North East Single Single All FUrban                 | )1-Jan-99 |
| 16 | 2177 | 367 | 0 HUNTLY ROUNDABOUT TO JUNCTION SINGLE 2-       | 1280 | 60 HUNTLY FJCT A920 Single, dat Grampian North East North East Single Single All FRural C    | )1-Jan-99 |
| 16 | 2177 | 367 | 0 HUNTLY ROUNDABOUT TO JUNCTION SINGLE 2-       | 1280 | 60 HUNTLY FJCT A920 Single, dat Grampian North East North East Single Single All FRural C    | )1-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION A920 HUNTLY TO JUNCTION SINGLE 2-    | 40   | 60 JCT A920 JCT A920 Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION A920 HUNTLY TO JUNCTION SINGLE 2-    | 40   | 60 JCT A920 JCT A920 Single, dat Grampian North East North East Single Single All F Rural    | )1-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION A920 DUFFTOWN TO RIVER SINGLE 2-     | 440  | 60 JCT A920 R DEVER(Single, dat Grampian North East North East Single Single All F Rural C   | )1-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION A920 DUFFTOWN TO RIVER SINGLE 2-     | 440  | 60 JCT A920 R DEVER(Single, dat Grampian North East North East Single Single All F Rural     | )1-Jan-99 |
| 6  | 2145 | 617 | 0 RIVER DEVERON BR (E) TO RIVER DEV SINGLE 2-   | 50   | 60 R DEVER( R DEVER( Single, dat Grampian North East North East Single Single All F Rural 0  | )1-Jan-99 |
| 6  | 2145 | 617 | 0 RIVER DEVERON BR (E) TO RIVER DEV SINGLE 2-   | 50   | 60 R DEVER( R DEVER( Single, dat Grampian North East North East Single Single All F Rural 0  | )1-Jan-99 |
| 6  | 2145 | 617 | 0 RIVER DEVERON BRIDGE (W) TO JUNC SINGLE 2-    | 130  |                                                                                              | )1-Jan-99 |
| 6  | 2145 | 617 | 0 RIVER DEVERON BRIDGE (W) TO JUNC SINGLE 2-    | 130  | 60 R DEVER( JCT B9022 Single, dat Grampian North East North East Single Single All F Rural 0 | )1-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION B9022 PORTSOY TO START SINGLE 2-     | 2040 | 60 JCT B9022 ST CLIMB Single, dat Grampian North East North East Single Single All F Rural   | )1-Jan-99 |
|    |      |     |                                                 |      |                                                                                              |           |

| 6  | 2145 | 617 | 0 JUNCTION B9022 PORTSOY TO START SINGLE 2-   | 2040 | 60 JCT B9022 ST CLIMB Single, dat Grampian North East North East Single Single All F Rural             | 01-Jan-99 |
|----|------|-----|-----------------------------------------------|------|--------------------------------------------------------------------------------------------------------|-----------|
| 5  | 2045 | 588 | 0 START OF CLIMBING LANE TO END OF WIDE SING  | 1900 | 60 ST CLIMB END CLIM Single, dat Grampian North East North East Single Single All FRural               | 01-Jan-99 |
| 0  | 100  | 29  | 0 START OF CLIMBING LANE TO END OF WIDE SIN   | 1900 | 60 ST CLIMB END CLIM Single, dat Grampian North East North East Single Single All FRural               | 01-Jan-99 |
| 6  | 2145 | 617 | 0 START OF CLIMBING LANE TO END OF WIDE SIN   | 1900 | 60 ST CLIMB END CLIM Single, dat Grampian North East North East Single Single All FRural               | 01-Jan-99 |
| 6  | 2145 | 617 | 0 END OF CLIMBING LANE TO JUNCTION SINGLE 2-  | 1350 | 60 END CLIM 2 Single, dat Grampian North East North East Single Single All FRural                      | 01-Jan-99 |
| 6  | 2145 | 617 | 0 END OF CLIMBING LANE TO JUNCTION SINGLE 2-  | 1350 | 60 END CLIM ? Single, dat Grampian North East North East Single Single All FRural                      | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION TO CAIRNIE TO JUNCTION 1 SINGLE 2- | 1050 | 60 ? JCT BOGE Single, dat Grampian North East North East Single Single All FRural                      | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION TO CAIRNIE TO JUNCTION TSINGLE 2-  | 1050 | 60 ? JCT BOGF Single, dat Grampian North East North East Single Single All FRural                      | 01-Jan-99 |
| 6  | 2145 | 617 |                                               | 3200 | 60 JCT BOGF JCT B9115 Single, dat Grampian North East North East Single Single All FRural              | 01-Jan-99 |
|    |      | -   | 0 JUNCTION TO BOGHEAD TO JUNCTION SINGLE 2-   |      |                                                                                                        |           |
| 6  | 2145 | 617 | 0 JUNCTION TO BOGHEAD TO JUNCTION SINGLE 2-   | 3200 | 60 JCT BOGF JCT B9115 Single, dat Grampian North East North East Single Single All F Rural             | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION B9115 DRUMMUIR TO JUNC SINGLE 2-   | 4410 | 60 JCT B9115 JCT KEITH Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION B9115 DRUMMUIR TO JUNC SINGLE 2-   | 4410 | 60 JCT B9115 JCT KEITH Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION KEITH MARKET GRD TO JUNSINGLE 2-   | 760  | 30 JCT KEITH JCT DRUN Single, dat Grampian North East North East Single Single All F Rural             | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION KEITH MARKET GRD TO JUNSINGLE 2-   | 760  | 30 JCT KEITH JCT DRUN Single, dat Grampian North East North East Single Single All F Rural             | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION DRUM ROAD TO JUNCTION SINGLE 2-    | 100  | 30 JCT DRUNJCT A95 B Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 6  | 2145 | 617 | 0 JUNCTION DRUM ROAD TO JUNCTION SINGLE 2-    | 100  | 30 JCT DRUNJCT A95 B Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION A95 BANFF TO JUNCTION B'SINGLE 2-  | 170  | 30 JCT A95 B JCT B9116 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION A95 BANFF TO JUNCTION B'SINGLE 2-  | 170  | 30 JCT A95 B JCT B9116 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION B9116 NEWMILL TO JUNCTI SINGLE 2-  | 560  | 30 JCT B9116 JCT B9014 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION B9116 NEWMILL TO JUNCTI SINGLE 2-  | 560  | 30 JCT B9116 JCT B9014 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION B9014 DUFFTOWN TO JUNC SINGLE 2-   | 420  | 30 JCT B901 <sup>2</sup> JCT REGE Single, dat Grampian North East North East Single Single All F Rural | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION B9014 DUFFTOWN TO JUNC SINGLE 2-   | 420  | 30 JCT B901 <sup>2</sup> JCT REGE Single, dat Grampian North East North East Single Single All F Rural | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION REGENT CT TO JUNCTION / SINGLE 2-  | 430  | 60 JCT REGEJCT A95 C Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 14 | 3429 | 629 | 0 JUNCTION REGENT CT TO JUNCTION / SINGLE 2-  | 430  | 60 JCT REGEJCT A95 C Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION A95 CRAIGELLACHIE TO JC SINGLE 2-  | 1400 | 60 JCT A95 C JCT B9017 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION A95 CRAIGELLACHIE TO JC SINGLE 2-  | 1400 | 60 JCT A95 C JCT B9017 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION B9017 NEWMILL TO JUNCTI SINGLE 2-  | 690  | 60 JCT B9017 JN R B901 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION B9017 NEWMILL TO JUNCTI SINGLE 2-  | 690  | 60 JCT B9017 JN R B901 Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION B9016 BUCKIE TO JUNCTIOI SINGLE 2- | 3980 | 60 JN R B901 JCT X MUI Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION B9016 BUCKIE TO JUNCTIOI SINGLE 2- | 3980 | 60 JN R B901 JCT X MUI Single, dat Grampian North East North East Single Single All F Rural            | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION TO MULBEN TO LAYBY DRA SINGLE 2-   | 1980 | 60 JCT X MUILAYBY DR Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 8  | 1869 | 386 | 0 JUNCTION TO MULBEN TO LAYBY DRA SINGLE 2-   | 1980 | 60 JCT X MUI LAYBY DR Single, dat Grampian North East North East Single Single All F Rural             | 01-Jan-99 |
| 8  | 1869 | 386 | 0 LAYBY DRAMLACH SCHEME (S) TO FO SINGLE 2-   | 2200 | 60 LAYBY DR FOCHABE Single, dat Grampian North East North East Single Single All F Rural               | 01-Jan-99 |
| 8  | 1869 | 386 | 0 LAYBY DRAMLACH SCHEME (S) TO FO SINGLE 2-   | 2200 | 60 LAYBY DRFOCHABE Single, dat Grampian North East North East Single Single All FRural                 | 01-Jan-99 |
| 8  | 1869 | 386 | 0 FOCHABERS 30MPH SIGNS TO JUNCTI SINGLE 2-   | 284  | 30 FOCHABE JCT A96/A Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 8  | 1869 | 386 | 0 FOCHABERS 30MPH SIGNS TO JUNCTI SINGLE 2-   | 284  | 30 FOCHABE JCT A96/A Single, dat Grampian North East North East Single Single All F Rural              | 01-Jan-99 |
| 8  | 1869 | 386 | 0 A96/A98 ROUNDABOUT, FOCHABERS ROUNDAE       | 63   | 30 A96/A98 R A96/A98 R ? Grampian North East North East Single Single All FUrban                       | 01-Jan-99 |
| 8  | 1869 | 386 | 0 A96/A98 ROUNDABOUT, FOCHABERS ROUNDAE       | 63   | 30 A96/A98 R A96/A98 R ? Grampian North East North East Single Single All FUrban                       | 01-Jan-99 |
|    |      |     |                                               |      |                                                                                                        |           |

## **APPENDIX** 5

Design Manual for Roads and Bridges (DMRB)

Traffic Emissions Assessment

## DMRB: Assessment of Local Air Quality

## **OUTPUT SHEET**

| Current receptor |  |
|------------------|--|
|                  |  |

|                     | -                        |                        |       |                   |               |                 |                   |  |
|---------------------|--------------------------|------------------------|-------|-------------------|---------------|-----------------|-------------------|--|
| <b>Receptor Nar</b> | ne                       | Queen St 20            | mph   |                   | Receptor num  | ıber            | 2                 |  |
| Assessment          | year                     | 2010                   |       |                   |               |                 |                   |  |
| Results             |                          |                        |       |                   |               |                 |                   |  |
|                     |                          | Annual mean            |       |                   | For comparise | on with Air Qua | ality Standards   |  |
| Pollutant           | Background concentration | Road traffic component | Total | Units             | Metric        | Value           | Units             |  |
| CO                  | 0.07                     | 0.25                   | 0.32  | mg/m <sup>3</sup> | Annual mean*  | 0.32            | mg/m <sup>3</sup> |  |
| Benzene             | 0.04                     | 0.25                   | 0.29  | μg/m <sup>3</sup> | Annual mean   | 0.29            |                   |  |
| 1,3-butadiene       | 0.01                     | 0.30                   | 0.31  | μq/m <sup>3</sup> | Annual mean   | 0.31            | μg/m³             |  |
| NO <sub>x</sub>     | 3.0                      | 61.9                   | 64.9  | μg/m <sup>3</sup> | N             | ot applicab     | le                |  |
| NO <sub>2</sub>     | 2.4                      | 15.1                   | 17.5  |                   | Annual mean*  | 17.5            | μg/m³             |  |
| PM <sub>10</sub>    | 14.5                     | 6.70                   | 21.20 |                   |               | 21.2            | μg/m³             |  |

21.20 μ**g/m<sup>3</sup>** 

| Contribu    | ition of eac               | ch link to         | annual mean              |                |                          |
|-------------|----------------------------|--------------------|--------------------------|----------------|--------------------------|
| Link number | CO<br>(mg/m <sup>3</sup> ) | Benzene<br>(μg/m³) | 1,3-butadiene<br>(μg/m³) | NOx<br>(μg/m³) | ΡΜ <sub>10</sub> (μg/m³) |
| 1           | 0.08                       | 0.08               | 0.10                     | 20.65          | 2.24                     |
| 2           | 0.08                       | 0.08               | 0.10                     | 20.65          | 2.24                     |
| 3           | 0.08                       | 0.08               | 0.09                     | 19.49          | 2.11                     |
| 4           | 0.00                       | 0.00               | 0.01                     | 1.07           | 0.12                     |
| 5           |                            |                    |                          |                |                          |
| 6           |                            |                    |                          |                |                          |
| 7           |                            |                    |                          |                |                          |
| 8           |                            |                    |                          |                |                          |
| 9           |                            |                    |                          |                |                          |
| 10          |                            |                    |                          |                |                          |
| 11          |                            |                    |                          |                |                          |
| 12          |                            |                    |                          |                |                          |
| 13          |                            |                    |                          |                |                          |
| 14          |                            |                    |                          |                |                          |
| 15          |                            |                    |                          |                |                          |

\* See Footnote 4 in DMRB Volume 11 Chapter 3

| All receptors |                        |      | Pollutant cond    | entrations | at receptor       |                        |                   |        |                      |
|---------------|------------------------|------|-------------------|------------|-------------------|------------------------|-------------------|--------|----------------------|
| Receptor      |                        |      | CO *              | Benzene    | 1,3-butadiene     | NO <sub>x</sub>        | NO <sub>2</sub> * |        | PM <sub>10</sub>     |
| number        | Name                   | Year | Annual mean       | Annual     | Annual mean       | Annual                 | Annual            | Annual | Days                 |
| number        |                        |      | mg/m <sup>3</sup> | mean       | μg/m <sup>3</sup> | mean µg/m <sup>3</sup> | mean              | mean   | >50µg/m <sup>3</sup> |
| 1             | Queen St 10mph         | 2010 | 0.47              | 0.40       | 0.48              | 82.62                  | 20.52             | 23.78  | 9.66                 |
| 2             | Queen St 20mph         | 2010 | 0.32              | 0.29       | 0.31              | 64.89                  | 17.50             | 21.20  | 5.04                 |
| 3             | N College St 10mph     |      | 0.33              | 0.28       | 0.33              | 56.18                  | 15.89             | 20.70  | 4.31                 |
| 4             | N College St 20mph     | 2010 | 0.23              | 0.21       | 0.21              | 44.34                  | 13.54             | 18.97  | 2.26                 |
| 5             | Speybay 10mph          | 2010 | 0.25              | 0.19       | 0.28              | 50.13                  | 14.72             | 19.63  | 2.97                 |
| 6             | Speybay 20mph          | 2010 | 0.18              | 0.14       | 0.18              | 38.93                  | 12.40             | 18.11  | 1.49                 |
| 7             | N College Street 10mph | 2005 | 0.43              | 0.37       | 0.46              | 78.95                  | 20.29             | 25.55  | 13.75                |
| 8             | N College Street 20mph | 2005 | 0.29              | 0.26       | 0.29              | 61.80                  | 17.29             | 22.42  | 7.03                 |
| 9             | Queen Street 10mph     | 2005 | 0.60              | 0.53       | 0.67              | 116.39                 | 25.95             | 30.80  | 30.57                |
| 10            | Queen Street 20mph     | 2005 | 0.40              | 0.37       | 0.43              | 90.72                  | 22.18             | 26.12  | 15.21                |
| 11            | Speybay 10mph          | 2005 | 0.31              | 0.25       | 0.38              | 70.45                  | 18.84             | 23.98  | 10.08                |
| 12            | Speybay 20mph          | 2005 | 0.22              | 0.18       | 0.24              | 54.30                  | 15.88             | 21.17  | 4.99                 |
| 13            | N College Street 10mph | 2004 | 0.39              | 0.37       | 0.48              | 78.39                  | 18.15             | 26.02  | 14.96                |
| 14            | N College Street 20mph | 2004 | 0.24              | 0.25       | 0.30              | 60.66                  | 15.11             | 22.67  | 7.49                 |
| 15            | Speybay 10mph          | 2004 | 0.26              | 0.24       | 0.40              | 69.39                  | 16.65             | 24.34  | 10.87                |
| 16            | Speybay 20mph          | 2004 | 0.16              | 0.16       | 0.25              | 52.68                  | 13.63             | 21.36  | 5.27                 |
| 17            | Queen St 10mph         | 2004 | 0.59              | 0.56       | 0.73              | 117.37                 | 23.95             | 31.55  | 33.58                |
| 18            | Queen St 20mph         | 2004 | 0.36              | 0.37       | 0.46              | 90.84                  | 20.12             | 26.55  | 16.39                |
|               |                        |      |                   |            |                   |                        |                   |        |                      |
| 44            |                        |      |                   |            |                   |                        |                   |        |                      |

Days >50µg/m³

Days

5

\* See Footnote 4 in DMRB Volume 11 Chapter 3

APPENDIX 6

Inventory of SEPA Regulated Industrial Processes

| Operator        | Location | NGR          | Process Type |  |  |                 |
|-----------------|----------|--------------|--------------|--|--|-----------------|
|                 |          |              |              |  |  |                 |
|                 |          |              |              |  |  |                 |
|                 |          |              |              |  |  |                 |
| Buckie Shipyard |          | NJ 4340 6611 |              |  |  | Sep-00          |
| Ltd             | Buckie   |              |              |  |  | PPC application |
|                 |          |              |              |  |  | made Mar 2001   |
|                 |          |              |              |  |  |                 |
|                 |          |              |              |  |  |                 |

| Operator                      | Location                                      | Process Type                                         | NGR         | Section/PGN                | Relevant LAQM<br>Pollutants | Relevant<br>Emissions Data<br>Available |     | Authorisation/P<br>ermit Ref<br>APC/N/<br>PPC/N/ | Date of<br>Authorisation |
|-------------------------------|-----------------------------------------------|------------------------------------------------------|-------------|----------------------------|-----------------------------|-----------------------------------------|-----|--------------------------------------------------|--------------------------|
| C&S Murphy                    | Douglasbrae<br>Knackery Keith<br>Banffshire   | Animal carcase incineration                          | NJ4120 4902 | S5.1                       | None                        | N/A                                     | N/A | 20187                                            | Sep-99                   |
|                               |                                               |                                                      |             | PG 5/3 (95)                |                             |                                         |     |                                                  |                          |
| Caledonian<br>Quarry Products | Cloddach<br>Quarry Dallas<br>Road Elgin       | Cement                                               | NJ1945 5859 | S3.1                       | Fugitive PM10               | N/A                                     | N/A | 20216                                            | Dec-93                   |
| Caledonian<br>Quarry Products | Lochinver<br>Quarry<br>Miltonduff By<br>Elgin | Cement                                               | NJ1835 6077 | S3.1<br>PG 3/1 (95)        | Fugitive PM10               | N/A                                     | N/A | 20026                                            | Feb-98                   |
| RMC Readymix<br>Scotland      | Rothes Glen<br>Quarry Rothes                  | Cement                                               | NJ2556 5298 | S3.1                       | Fugitive PM10               | N/A                                     | N/A | 20084                                            | Feb-99                   |
|                               |                                               |                                                      |             | PG 3/1 (95)                |                             |                                         |     |                                                  |                          |
| Ennstone Thistle<br>Ltd       |                                               | Roadstone<br>Coating                                 | NJ2091 5949 | S3.4                       | SO2                         | N/A                                     | N/A | 220020                                           | Nov-02                   |
|                               |                                               |                                                      |             | PG 3/15 (96)               | PM10                        |                                         |     |                                                  |                          |
| Caledonian<br>Quarry Products | Cairdshill Quarry<br>Blackhillock<br>Keith    | Crushing Plant<br>(Quarry)                           | NJ443 484   | S3.4                       | Fugitive PM10               | N/A                                     | N/A | 20287                                            | Aug-94                   |
|                               |                                               |                                                      |             | PG 3/8 (96)                |                             |                                         |     |                                                  |                          |
| Leiths<br>(Scotland) Ltd      | Bluehill Quarry<br>Keith                      | Crushing Plant<br>(Quarry)                           | NJ2878 4371 | S3.4                       | Fugitive PM10               | N/A                                     | N/A | 20261                                            | Apr-94                   |
|                               |                                               |                                                      |             | PG 3/8 (96)                |                             |                                         |     |                                                  |                          |
| Leiths<br>(Scotland) Ltd      | Parkmore<br>Quarry Dufftown<br>Keith          | Crushing Plant<br>(Quarry) &<br>Roadstone<br>coating | NJ3345 4144 | S3.4                       | Fugitive PM10               | N/A                                     | N/A | 20262                                            | May-94                   |
|                               |                                               | Ŭ                                                    |             | PG 3/8 (96)<br>PG3/15 (96) |                             |                                         |     |                                                  |                          |

| Leiths<br>(Scotland) Ltd        | Newforres<br>Quarry Rafford                   | (Quarry)&Roads             | NJ0630 5790 | S3.4                       | Fugitive PM10       | N/A | N/A | 50046  | Apr-94 |
|---------------------------------|-----------------------------------------------|----------------------------|-------------|----------------------------|---------------------|-----|-----|--------|--------|
|                                 |                                               | tone coating               |             | PG 3/8 (96)<br>PG3/15 (96) |                     |     |     |        |        |
| Limehillock<br>Quarry Plant Ltd | Grange Keith                                  | Crushing Plant<br>(Mobile) | N/A         | S3.4                       | Fugitive PM10       | N/A | N/A | 20057  | Aug-98 |
|                                 |                                               |                            |             | PG3/16(96)                 |                     |     |     |        |        |
| Limehillock<br>Quarry Plant Ltd | Grange Keith                                  | Crushing Plant<br>(Mobile) | N/A         | S3.4                       | Fugitive PM10       | N/A | N/A | 20022  | May-94 |
|                                 |                                               |                            |             | PG3/16(96)                 |                     |     |     |        |        |
| Spey Bay<br>Trading Co Ltd      | Nether Dallachy<br>Spey Bay<br>Fochabers      | Crushing Plant<br>(Mobile) | N/A         | S3.4                       | Fugitive PM10       | N/A | N/A | 220019 | Sep-02 |
|                                 |                                               |                            |             | PG 3/16 (96)               |                     |     |     |        |        |
| Highland Metals                 | Pinefield Ind Est                             | Non-ferrous                | NJ2325 6249 | S2.2                       | None                | N/A | N/A | 20090  | Nov-94 |
|                                 | Elgin                                         | Metal                      |             | PG 2/2 (96)                |                     |     |     |        |        |
| Moray<br>Crematorium Ltd        | Broadley Moray                                | Crematoria                 | NJ3978 6171 | S5.1                       | None                | N/A | N/A | 20028  | Mar-98 |
|                                 |                                               |                            |             | PG 5/2 (95)                |                     |     |     |        |        |
| Asda Stores                     | Asda Elgin PFS<br>Edgar Rd Elgin              | PVR                        | NJ2198 6219 | S1.4                       | Fugitive<br>benzene | N/A | N/A | 20072  | Jan-99 |
|                                 |                                               |                            |             | PG 1/14 (96)               |                     |     |     |        |        |
| Esso Petroleum<br>Co Ltd        | Pinefield Service<br>Station East Rd<br>Elgin | PVR                        | NJ2286 6261 | S1.4                       | Fugitive<br>benzene | N/A | N/A | 20129  | Feb-99 |
|                                 |                                               |                            |             | PG 1/14 (96)               |                     |     |     |        |        |
| FW Kerridge Ltd                 | Greshop Filling<br>Station Forres             | PVR                        | NJ0285 5870 | S1.4                       | Fugitive<br>benzene | N/A | N/A | 50149  | Feb-99 |
|                                 |                                               |                            |             | PG 1/14 (96)               |                     |     |     |        |        |
| lain Aitkenhead                 | Mosstodloch<br>Service Station                | PVR                        | NJ3289 5995 | S1.4                       | Fugitive<br>benzene | N/A | N/A | 20113  | Feb-99 |
|                                 |                                               |                            |             | PG 1/14 (96)               |                     |     |     |        |        |

| lain Aitkenhead           | Buccaneer<br>Service Station<br>Lossiemouth               | PVR    | NJ2183 6443 | S1.4                 | Fugitive<br>benzene | N/A | N/A | 20115  | Feb-99 |
|---------------------------|-----------------------------------------------------------|--------|-------------|----------------------|---------------------|-----|-----|--------|--------|
|                           |                                                           |        |             | PG 1/14 (96)         |                     |     |     |        |        |
| lain Aitkenhead           | New Elgin<br>Service Station<br>Main Street New<br>Elgin  | PVR    | NJ2215 6140 | S1.4                 | Fugitive<br>benzene | N/A | N/A | 20114  | Feb-99 |
|                           |                                                           |        |             | PG 1/14 (96)         |                     |     |     |        |        |
| John Thomson              | Harbour Service<br>Station Shore<br>Street<br>Lossiemouth | PVR    | NJ2371 7115 | S1.4                 | Fugitive<br>benzene | N/A | N/A | 20308  | Nov-01 |
|                           |                                                           |        |             | PG 1/14 (96)         |                     |     |     |        |        |
| Matrix<br>(Highland) Ltd  | West Road<br>Service Station<br>Elgin                     | PVR    | NJ2061 6262 | S1.4<br>PG 1/14 (96) | Fugitive<br>benzene | N/A | N/A | 20109  | Feb-99 |
| Moravian Motors           | High Street<br>Buckie                                     | PVR    | N4314 6444  | S1.4<br>PG 1/14 (96) | Fugitive<br>benzene | N/A | N/A | 20041  | Nov-98 |
| Shell UK Ltd              | Shell Keith<br>Regent Road<br>Keith                       | PVR    | NJ4234 5112 | S1.4<br>PG 1/14 (96) | Fugitive<br>benzene | N/A | N/A | 20126  | Feb-99 |
| Sheila Elaine<br>Gittings | Seapark Filling<br>Station Kinloss<br>Forres              | PVR    | NJ778 198   | S1.4                 | Fugitive<br>benzene | N/A | N/A | 50166  | Mar-99 |
|                           |                                                           |        |             | PG 1/14 (96)         |                     |     |     |        |        |
| Tyock Filling<br>Station  | East Road Elgin                                           | PVR    | NJ2251 6274 | S1.4<br>PG 1/14 (96) | Fugitive<br>benzene | N/A | N/A | 20140  | Feb-99 |
| lan Cox                   | Victoria Filling<br>Station Victoria<br>Road Forres       | PVR    | NJ0450 5930 | S1.4                 | Fugitive<br>benzene | N/A | N/A | 50380  | Feb-00 |
|                           |                                                           |        |             | PG 1/14 (96)         |                     |     |     |        |        |
| James Jones &<br>Sons     | Unit 2 Greshop<br>Ind Est Forres                          | Timber | NJ0271 5877 | S6.7                 | None                | N/A | N/A | 220025 | Dec-02 |

|                                |                                                                     |                       |              | PG 6/2 (95)          |       |     |     | 1     |        |
|--------------------------------|---------------------------------------------------------------------|-----------------------|--------------|----------------------|-------|-----|-----|-------|--------|
| James Jones &<br>Sons          | Mosstodloch<br>Sawmill<br>Garmouth Road<br>Mosstodloch<br>Fochabers | Timber                | NJ3295 6036  | S6.7                 | None  | N/A | N/A | 20089 | Jul-93 |
|                                |                                                                     |                       |              | PG 6/2 (95)          |       |     |     |       |        |
| Moray Timber<br>Ltd            | Waterford Ind<br>Est Forres                                         | Timber                | NH0275 5920  | S6.7                 | None  | N/A | N/A | 50389 | Aug-00 |
|                                |                                                                     |                       |              | PG 6/2 (95)          |       |     |     |       |        |
| Chivas Brothers<br>Ltd         | Livet Feed<br>Products<br>Glenlivet<br>Ballindalloch                | Vegetable<br>Matter   | NJ1926 2839  | S6.9                 | None  | N/A | N/A | 20260 | Feb-95 |
|                                |                                                                     |                       |              | PG 6/27 (96)         |       |     |     |       |        |
|                                | Dark Grains<br>Plant Rothes                                         | Vegetable<br>Matter   | NJ2776 4969  | S6.9                 | None  | N/A | N/A | 20088 | Mar-95 |
|                                |                                                                     |                       |              | PG 6/27 (96)         |       |     |     |       |        |
| UDV (Distilling)<br>Ltd        | Speyside Dark<br>Grains Plant<br>Carron Aberlour                    | Vegetable<br>Matter   | NJ2367 4113  | S6.9                 | None  | N/A | N/A | 20259 | Mar-95 |
|                                |                                                                     |                       |              | PG 6/27 (96)         |       |     |     |       |        |
| UDV (Distilling)<br>Ltd        | Glenlossie Dark<br>Grains Plant<br>Birnie Elgin                     | Vegetable<br>Matter   | NJ2122 5730  | S6.9                 | None  | N/A | N/A | 20258 | Mar-95 |
| Ashgrove Motor                 | Rody Popair                                                         | Vehicle               | NJ2250 6233  | PG 6/27 (96)<br>S6.5 | None  | N/A | N/A | 20003 | Sep-96 |
| Body Co                        | Centre<br>Ashgrove Road<br>Elgin                                    | respraying            | 1132230 0233 | PG 6/34 (97)         | INCHE | NA  |     | 20003 | 3ep-90 |
| Dicksons Body<br>Repair Centre | Saint<br>Catherine's<br>Road Forres                                 | Vehicle<br>respraying | NJ0345 5845  | S6.5<br>PG 6/34 (97) | None  | N/A | N/A | 50002 | Dec-96 |

| Peter A          | Autobody                | Vehicle    | NJ4364 5000  | S6.5         | None | N/A | N/A  | 20002  | Sep-96 |
|------------------|-------------------------|------------|--------------|--------------|------|-----|------|--------|--------|
| Cockburn         | Centre 11               | respraying |              |              |      |     |      |        |        |
|                  | Edindiach Road<br>Keith |            |              | PG 6/34 (97) |      |     |      |        |        |
| Baillie Brothers | Linkwood Ind            | Waste Oil  | NJ 234 626   | S1.3         | None | N/A | N/A  | 20121  | Jun-99 |
| (TS) Ltd         | Est Elgin               | Burner     |              | PG 1/1 (95)  |      |     |      |        |        |
| Dungan 8         | 2 Weterford             | Wests Oil  | N 10240 5020 | 04.0         | Nega |     | N//A | 50042  | Dec 02 |
|                  | 2 Waterford             | Waste Oil  | NJ0340 5930  | S1.3         | None | N/A | N/A  | 50043  | Dec-93 |
| Proctor Motors   | Way Ind Est<br>Forrres  | Burner     |              | PG 1/1 (95)  |      |     |      |        |        |
| Regency Car      | 119 High Street         | Waste Oil  | N/A          | S1.3         | None | N/A | N/A  | 220006 | Mar-02 |
| Sales            | Buckie                  | Burner     |              | PG 1/1 (95)  |      |     |      |        |        |
|                  |                         |            |              |              |      |     |      |        |        |

| Operator                             | Location                                | Waste Type                            | NGR         | Relevant LAQM<br>Pollutants | Relevant Emissions<br>Data Available | Licence Ref<br>WML/N/ | Date of Licence                                                              |
|--------------------------------------|-----------------------------------------|---------------------------------------|-------------|-----------------------------|--------------------------------------|-----------------------|------------------------------------------------------------------------------|
| Moray Council                        | Nether Dallachy<br>Landfill Spey Bay    | Domestic<br>Commercial<br>Industrial  | NJ3610 6435 | Fugitive PM10               | N/A                                  | 2009                  | 4 Oct-97                                                                     |
| Moray Council                        | Kirkhill Landfill<br>Calcots Rd Elgin   | Domestic<br>Commercial<br>Industrial  | NJ2343 6343 | Fugitive PM10               | N/A                                  | 20095/9               | 7 01/10/1997 closed<br>not yet restored                                      |
| Moray Council                        | Newtyle Landfill<br>Site Rafford Forres | Household commercial Industrial       | NJ0542 5527 | Fugitive PM10               | N/A                                  | 5003                  | 8 01/05/1997 closed                                                          |
| Robertson<br>Group<br>(Scotland) Ltd | Newton Toll Elgin                       | Construction<br>Industrial Demolition | NJ1664 6321 | Fugitive PM10               | N/A                                  | 2011                  | 2 01/12/1993<br>closing short - mid<br>term - restoration<br>material onsite |